
Economics, AI, and Optimization

Lecture Note 2: Intro to Game Theory

Christian Kroer∗

January 23, 2022

1 Nash Equilibrium

In this lecture we begin our study of Nash equilibrium. First we will learn the basic definitions, and
then we will get started on regret minimization, which will be an essential tool for will computing
Nash equilibrium later.

1.1 General-Sum Games

A normal-form game consists of:

• A set of players N = {1, . . . , n}

• A set of strategies S = S1 × S2 × · · · × Sn

• A utility function ui : S → R

We will use the shorthand s−i to denote the subset of a strategy vector s that does not include
player i’s strategy.

As a first solution concept we will consider dominant-strategy equilibrium (DSE). In DSE, we
seek a strategy vector s ∈ S such that each si is a best response no matter what s−i is. A classic
example is the prisoner’s dilemma: two prisoners are on trial for a crime. If neither confesses (stay
silent) to the crime then they will each get 1 year in prison. If one person confesses and the other
does not, then the confessor gets no time, but their co-conspirator gets 9 years. If both confess
then they both get 6 years.

Silent Confess

Silent -1,-1 -9,0
Confess 0,-9 -6,-6

In this game, confessing is a DSE: it yields greater utility than staying silent no matter what the
other player does. A DSE rarely exists in practice, but it can be useful in the context of mechanism
design, where we get to decide the rules of the game. It is the idea underlying e.g. the second-price
auction which we will cover later.
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Consider some strategy vector s ∈ S. We say that s is a pure-strategy Nash equilibrium if for
each player i and each alternative strategy s′i ∈ Si:

ui(s) ≥ ui(s−i, s′i),

where s−i denotes all the strategies in s except that of i. A DSE is always a pure-strategy Nash
equilibrium, but not vice versa. Consider the Professor’s dilemma,1 where the professor chooses a
row strategy and the students choose a column strategy:

Students
Listen Sleep

Prepare 106, 106 -10,0

P
ro

f.
Slack off 0,-10 0,0

In this game there is no DSE, but there’s clearly two pure-strategy Nash equilibria: the professor
prepares and students listen, or the professor slacks off and students sleep. But these have quite
different properties. Thus equilibrium selection is an issue for general-sum games. There are at
least two reasons for this: first, if we want to predict the behavior of players then how do we
choose which equilibrium to predict? Second, if we want to prescribe behavior for an individual
player, then we cannot necessarily suggest that they player some particular strategy from a Nash
equilibrium, because if the others player do not play the same Nash equilibrium then it may be a
terrible suggestion.

Moreover, pure-strategy equilibria are not even guaranteed to exist, as we saw in the previous
lecture with the rock-paper-scissors example.

To fix the existence issue we may consider allowing players to randomize over their choice of
strategy (as in rock-paper-scissors where players should randomize uniformly). Let σi ∈ ∆|Si|

denote player i’s probability distribution over their strategy, this is called a mixed strategy. Let a
strategy profile be denoted by σ = (σ1, . . . , σn). By a slight abuse of notation we may rewrite a
player’s utility function as

ui(σ) =
∑
s∈S

ui(s)
∏
i

σi(si)

A (mixed-strategy) Nash equilibrium is a strategy profile σ such that for all pure strategies σ′i (σ′i
is pure if it puts probability 1 on a single strategy):

ui(σ) ≥ ui(σ−i, σ′i).

Now, Nash’s theorem says that

Theorem 1. Any game with a finite set of strategies and a finite set of players has a mixed-strategy
Nash equilibrium.

Now, since our goal is the prescribe or predict behavior, we would also like to be able to compute
a Nash equilibrium. Unfortunately this turns out to be computationally difficult:

Theorem 2. The problem of computing a Nash equilibrium in general-sum finite games is PPAD-
complete.

1Example borrowed from Ariel Procaccia’s slides
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We won’t go into detail on what the complexity class PPAD is for now, but suffice it to say
that it is weaker than the class of NP-complete problems (it is not hard to come up with a MIP
for computing a Nash equilibrium, for example), but still believed to take exponential time in the
worst case.

As a sidenote, one may make the following observation about why Nash equilibrium does not
“fit” in the class of NP-complete problems: typically in NP-completeness we ask questions such as
“does there exist a satisfying assignment to this Boolean formula?” But given a particular game,
we already know that a Nash equilibrium exists. Thus we cannot ask about the type of existence
questions typically used in NP-complete problems, but rather it is only the task of finding one
of the solutions that is difficult. This can be a useful notion to keep in mind when encountering
other problems that have guaranteed existence. That said, once one asks for additional properties
such as “does there exist a Nash equilibrium where the sum of utilities is at least v?” one gets an
NP-complete problem.

Given a strategy profile σ, we will often be interested in measuring how “happy” the players
are with the outcome of the game under σ. Most commonly, we are interested in the social welfare
of a strategy profile (and especially for equilibria). The social welfare is the expected value of the
sum of the player’s utilities:

n∑
i=1

ui(σ) =
n∑

i=1

∑
s∈S

ui(s)
n∏

i′=1

σi′(si′).

We already saw in the Professor’s Dilemma that there can be multiple equilibria with wildly different
social welfare: when the professor slacks off and the students sleep, the social welfare is zero; when
the professor prepares and the students listen, the social welfare is 2 · 106.

1.2 Zero-Sum Games

In the special case of a two-player zero-sum game, we have u1(s) = −u2(s)∀s ∈ S. In that case, we
can represent our problem as the bilinear saddlepoint problem we saw in the last lecture:

min
x∈∆n

max
y∈∆m

〈x,Ay〉.

A first observation one may make is that the minimization problem faced by the x-player is a
convex optimization problem, since the max operation is convexity-preserving. This suggests that
we should have a lot of algorithmic options to use. This turns out to be true: unlike the general
case, we can compute a zero-sum equilibrium in polynomial time using linear programming (LP).

In fact, we have the following stronger statement, which is essentially equivalent to LP duality:

Theorem 3 (von Neumann’s minimax theorem). Every two-player zero-sum game has a unique
value v, called the value of the game, such that

min
x∈∆n

max
y∈∆m

〈x,Ay〉 = max
y∈∆m

min
x∈∆n

〈x,Ay〉 = v.

We will prove a more general version of this theorem when we discus regret minimization.
Because zero-sum Nash equilibria are min-max solutions, they are the best that a player can

do, given a worst-case opponent. This guarantee is the rationale for saying that a given game has
been solved if a Nash equilibrium has been computed. Some games such as rock-paper-scissors are
trivially solvable as we know that uniform distribution is the only equilibrium. However, this notion
has also been applied to heads-up limit Texas hold’em, one of the smallest poker variants played by
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humans. In 2015, that games was essentially solved that game. Their notion of essentially solved is
based on having computed a strategy that is statistically indistinguishable from a Nash equilibrium
in a lifetime of human-speed play. The statistical notion was necessary because their solution was
computed using iterative methods that only converge to an equilibrium in the limit (but in practice
get quite close very rapidly). The same argument is also used in constructing AIs for even larger
two-player zero-sum poker games where we can only try to approximate the equilibrium.

Note that this guarantee does not hold in general-sum games, where we have no payoff guar-
antees if our opponent does not play their part of the same Nash equilibrium that we play. In-
terestingly, the AI and optimization methods developed for two-player zero-sum poker turned out
to still outperform top-tier human players in 6-player no-limit Texas hold’em poker. An AI based
on these methods ended up beating professional human players, in spite of the methods having no
guarantees on performance, nor even of converging to a general-sum Nash equilibrium.

Here is another interesting property of zero-sum Nash equilibrium: it is interchangeable. Mean-
ing that if you take an equilibrium (x, y) and another equilibrium (x′, y′) then (x, y′) and (x′, y)
are also equilibria. This is easy to see from the minimax formulation.

2 Historical Notes

[5] were the first to show that solving general games is a PPAD-complete problem. Their initial
result was for four-player games. Chen et al. [3] showed that the result holds even for two-player
general-sum games. NP-completeness of finding Nash equilibria with various properties was shown
by Gilboa and Zemel [6] and Conitzer and Sandholm [4].

The result where Heads-up limit Texas hold’em was essentially solved was by Bowling et al.
[1]. That paper also introduced the notion of “essentially solved.” The strong performance against
top-tier humans in 6-player poker was shown by Brown and Sandholm [2].
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