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1 Introduction

In this lecture note we will study the problem of how to aggregate a set of agent preferences into an
outcome, ideally in a way that achieves some desirable outcome. Desiderata we might care about
include social welfare, which is just the sum of the agent’s utilities derived from the outcome, or
revenue in the context of auctions.

Suppose that we have have a car, and we wish to give it to one of n people, with the goal of
giving it to the person that would get the most utility out of the car. One thing we could do is ask
each person to tell us how much utility they would get out of receiving the car, expressed as some
positive number. This, obviously, leads to the “who can name the highest number?” game, since
no person will want to tell us how much value they actually place on the car, but will instead try
to name as large of a number as possible.

The above, rather silly, example shows that in general we need to be careful about how we
design the rules that map the stated preferences by the agents of a mechanism into an outcome.
The general field concerned with the design of rules, or mechanisms for designing rules that ask
agents about their preferences and use that to choose an outcome is called mechanism design.

2 Auctions

We will mostly focus on the most classical mechanism-design setting: auctions. We will start by
considering single-item auctions: there is a single good for sale, and there is a set of n buyers, with
each buyer having some value v; for the good. The goal will be to sell the item via a sealed-bid
auction, which works as follows:

1. Each bidder ¢ submits a bid b; > 0, without seeing the bids of anyone else.
2. The seller decides who gets the good based on the submitted bids.
3. Each buyer i is charged a price p; which is a function of the bid vector b.

A few things in our setup may seem strange. First, most people would not think of sealed bids
when envisioning an auction. Instead, they typically envision what’s called the English auction. In
the English auction, bidders repeatedly call out increasing bids, until the bidding stops, at which
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point the highest bidder wins and pays their last bid. This auction can be conceptualized as having
a price that starts at zero, and then rises continuously, with bidders dropping out as they become
priced out. Once only one bidder is left, the increasing price stops and the item is sold to the last
bidder at that price. This auction format turns out to be equivalent to the second-price sealed-
bid auction which we will cover below. Another auction format is the Dutch auction, which is
less prevalent in practice. It starts the price very high such that nobody is interested, and then
continuously drops the price until some bidder says they are interested, at which point they win the
item at that price. The Dutch auction is likewise equivalent to the first-price sealed-bid auction,
which we cover below.

Secondly, it would seem natural to always give the item to the highest bid in step 2, but this
is not always done (though we will focus on that rule). Thirdly, the pricing step allows us to
potentially charge more bidders than only the winner. This is again done in some reasonable
auction designs, though we will mostly focus on auction formats where p; = 0 if ¢ does not win.

When thinking about how buyers are going to behave in an auction, we need to first clarify
what each buyers knows about the other bidders. The typical setting is one where each buyer 4
has some distribution F; from which they draw their bid. Every buyer knows the distribution of
every other buyer, but they only get to observe their own value v; ~ F; before choosing their bid b;.
For this model, we need a new game-theoretic equilibrium notion called a Bayes Nash equilibrium
(BNE). A BNE is a set of mappings {o;}}",, where o;(v;) specifies the bid that buyer i submits
when they have value 4, such that for all values v; and alternative bids b;, o;(v;) achieves at least
as much utility as b; in a Bayesian sense:

Ey_inr [ui(oi(vi), 0—i(v=i))|vi] = Ey_;nr;[ui(bi, 0—i(v—;))|vi].

In the auction context, u;(b;, 0_;(v_;) is utility that buyer i derives given the allocation and payment
rule. The idea of a BNE works more generally for a game setup where w; is some arbitrary utility
function.

We will now introduce some useful mechanism-design terminology. We will introduce it in this
single-item auction context, but it applies more broadly.

Efficiency. [*** write? ***]

Revenue. [*** write? ***]

Truthfulness, strategyproofness, and incentive compatibility. Informally, we say that an
auction is truthful or incentive compatible (IC) if buyers maximize their utility by bidding their true
value (i.e. b; = v;). More formally, an auction is dominant strategy incentive compatible (DSIC) if
a buyer maximizes their utility by bidding their value, no matter what everyone else does. Saying
that an auction (or more generally a mechanism) is “truthful” or “strategyproof” typically means
that it is DSIC. DSIC auctions are very attractive because it means that buyers do not need to
worry about what the other buyers will do: no matter what happens, they should just bid their
value. This also means that, as auction designers, we can reasonably expect that buyers will bid
their true value (or at least try to, if they are not perfectly capable of estimating it themselves).
This makes it much easier to reason about aspects such as efficiency or revenue.

A slightly weaker degree of truthfulness is that of Bayes-Nash incentive compatibility: an auction
is Bayes-Nash IC if there exists a BNE where every buyer bids their value. It is clear why this
notion is less appealing: Now buyers need to worry about whether other buyers are going to bid
truthfully. If they think that they will, then we might expect them to bid their value as well.
However, if the system starts out in some other state, we might worry that buyers will adapt their
bidding over time in a way that pushes them into some other non-truthful equilibrium.



2.1 First-price auctions

First-price auctions are perhaps what most people imagine when we say that we are selling our
good via a sealed-bid auctions. In first-price auctions, each buyer submits some bid b; > 0, and
then we allocate the item to the buyer ¢* with the highest bid and charge that buyer b;«. This is
also sometimes referred to as pay-your-bid.

Let’s briefly try to reason about what might happen in a first-price auction. Clearly, no buyer
should bid their true value for the good under this mechanism; in that case they receive no utility
even when they win. Instead, buyers should shade their bids, so that they sometimes win while
also receiving strictly positive utility. The problem is that buyers must strategize about how other
buyers will bid, in order to figure out how much to shade by.

This issue of shading and guessing what other buyers will bid happened in early Internet ad
auctions, where first-price auctions were initially adopted. Overture was an early pioneer in selling
Internet sponsored search ads via auction. They initially ran first-price auctions, and provided
services to MSN and Yahoo (which were popular search engines at the time). Bidding and pricing
turned out to be very inefficient, because buyers were constantly changing their bids in order to
best respond to each other. Plots of the price history show a clear “sawtooth pattern,” where a
pair of bidders will take turns increasing their bid by 1 cent each, in order to beat the other bidder.
Finally, one of the bidders reaches their valuation, at which point they drop their bid much lower
in order to win something else instead. Then, the winner realizes that they should bid much lower,
in order to decrease the price they pay. At that point, the bidder that dropped out starts bidding
1 cent more again, and the pattern repeats. This leads to huge price fluctuations, and inefficient
allocations, since about half the time the item goes to the bidder with the lower valuation.

All that said, it turns out that there does exist at least one interesting characterization of how
bidding should work in a single-item first-price auction (the Overture example technically consists
of many “independent” first-price auctions; though that independence does not truly hold as we
shall see later).

For this characterization, we assume the following symmetric model: we have n buyers as
before, and buyer i assigns value v; € [0,w] for the good. Each v; is sampled IID from an increasing
distribution function F'. F' is assumed to have a continuous density f and full support. Each bidder
knows their own value v;, but only knows that the value of each other buyer is sampled according
to F.

Given a bid b;, buyer i earns utility v; — b; if they win, and utility 0 otherwise. If there are
multiple bids tied for highest then we assume that a winner is picked uniformly at random among
the winning bids, and only the winning bidder pays.

It turns out that there exists a symmetric equilibrium in this setting, where each bidder bids
according to the function

B(vi) = E[Y1|Y1 < v,

where Y7 is the random variable denoting the maximum over n — 1 independently-drawn values
from F'.

Theorem 1. If every bidder in a first-price auction bids according to B then the resulting strategy
profile is a Bayes-Nash equilibrium.

Proof. Let G(y) = F(y)"~! denote the distribution function for Y.

Suppose all bidders except ¢ bids according to 8. The function § is continuous and monotonically
increasing: a higher value for v; simply adds additional values to the highest end of the distribution.
As a consequence, the highest bid other than that of bidder i is S(Y7). It follows that bidder ¢
should never bid more than 5(w), since that is the highest possible other bid. Now consider bidding



b; < B(w). Letting z be such that 3(z) = b;, the expected value that bidder i obtains from bidding
b; is:

I(b;, v;) =G(2)[v; — B(2)]

=G(z)v; — G(2)E[Y1|Y1 < 7] by definition of 5(z)

=G(2)v; — / yg(y)dy by definition of expectation
0

=G(z)v; )z —I—/ Gy integration by parts

=G(2)(v; — 2) /G

Now we can compare the values from bidding 5(v;) and b;:

TH(B(v;), v5) — (i, v1) = Gi(wn) (i — v3) /G Yy — G(=) (v — 2) /G

= G()(z — i) - / Gy

If z > v; then this is clearly positive since G(z) > G(y) for all y € [v;, z]. If z < v;, then G(z) < G(y),
and so we have a negative number and subtract a more negative number. O

A nice property that follows from the monotonicity of 8 is that the item is always allocated to
the bidder with the highest valuation, and thus the symmetric equilibrium is efficient.

2.2 Second-price auctions

Now we look at another pricing rule: the second-price auction. The second-price auction turns
out to simply allow buyers to submit their true value as their bid. In a second-price auction, the
winning bidder ¢* is charged the second-highest bid. It’s easy to see that a bidder should simply
bid their valuation in this auction format. There are four cases to consider for a non-truthful bid

bi 7& (N
1. b; > v; > by where by is the second-highest bid. In that case buyer ¢ would have gotten the
same utility from bidding v;.

2. b; > by > v; where by is the second-highest bid. In that case buyer ¢ wins, but gets utility
v; — by < 0, and they would have been better off bidding their valuation.

3. b; < by < v; where by is the second-highest bid. In that case buyer 7 does not win, but they
could have won and gotten strictly positive utility if they had bid their valuation.

4. by < b; < v; where by is the second-highest bid. In that case buyer ¢ wins, but they would
have won, and paid the same, if they had bid their true value.

It follows that the second-price auction is DSIC, because an agent should report their true valuation
no matter what everybody else does. The second-price auction is also efficient, in the sense that
it maximizes social welfare (since the item goes to the buyer with the highest value). Finally, it is
computable, in the sense that it is easy to find the allocation and payments.

Note that the first-price auction is also computable, and under the symmetric equilibrium given
in theorem [1] it is also efficient. But it is not truthful, and it is not hard to come up with a simple
discrete setting where there is not even an equilibrium.
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2.3 Sponsored Search Auctions

First and second-price auctions are natural to think of due to traditional ideas of what auctions
are. However, in the modern Internet era new types of auction settings have become prevalent that
go beyond single-item auctions. This is largely due to Internet advertising, which funds essentially
the entirety of Google as well as Facebook and other free major Internet services such as Twitter
and Reddit. In these auctions there are multiple reasons why we cannot simply analyze single-
item auctions as above. Two major reasons are: 1) advertisers participate in millions of auctions
and have budgets that span across these auctions, and 2) each individual auction typically has
multiple ad slots for sale. We will now investigate the second reason, while the first reason will be
investigated in the next lecture note.

The classical example of a sponsored search auction is a Google query, where a few ads (typically
2) are shown at the top of the search. Figure|l|on the left shows an example search for the keyword
“mortgage.” The sponsored search auction model can also be used to approximate other settings
such as the insertion of ads in a feed. For example, Reddit typically inserts 1 ad in the set of visible
results before scrolling (see Figure [1| on the right), with another ad appearing in the next 10-15
results (tested March 28th 2020). Similarly, Facebook and Twitter insert 1-2 sponsored posts near
the top of the feed. Truly capturing feed auctions does require some care, however. The assumption
of there being a fixed number of items is incorrect for that setting. Instead, the number of ads
shown depends on how far the user scrolls, the size of the ads, and what else is being shown in
terms of organic content.

In the sponsored search auction model, a set of k slots are for sale. The slots are shown in
ranked order, and the value that an advertiser derives from showing their ad in a particular slot
J decomposes into two terms v;; = c;q; where ¢; is the value that the advertiser places on a user
clicking on their ad, and ¢; is the advertiser-independent click probability of slot j. It is assumed
that q1 > g2 > - > qg, i.e. the top slot is better than the second slot, and so on. It is assumed
that advertisers are not inherently interested in getting their ad shown. Instead, their goal is to
get the user to click on the ad. Hence, our auction design will only charge an advertiser if their ad
is shown.

The generalized second-price (GSP) auction sells the k slots as follows: we collect a set of bids
b € R™ (assume n > k). Then we sort b (say in the order by > by > --- > b,), and allocate the
slots in order of bids (so b; gets slot 1, up to bid by getting slot k). If the user clicks on ad i < k,
then advertiser 7 is charged the next-highest bid b;11. GSP generalizes second-price auctions in the
sense that if £ = 1 then this auction format is equivalent to the standard second-price auction (if
we take expected values in lieu of the pay-per-click model).



3 Mechanism Design

More generally, in mechanism design:
e There’s a set of outcomes O, and the job of the mechanism is to choose some outcome o € O

e Each agent ¢ has a private type 0; € O;, that they draw from some publicly-known distribution
F;

e Each agent i has some publicly-known valuation function v;(0|6;) that specifies a utility for
each outcome, given their type

e The goal of the center is to design a mechanism that maximizes some objective, e.g. social
welfare ), u;(0|6;)

A mechanism takes as input a vector of reported types 6 from the players, and outputs an
outcome, formally it is a function f : x;0; — O that specifies the outcome that results from
every possible set of reported types. In mechanism design with money, we also have a payment
function g : x;0; — R™ that specifies how much each agent pays under the outcome. In less formal
terms, a mechanism merely specifies what happens, given the reported types from the agents. In
first and second-price auctions the outcome function was the same (allocate to the highest bidder),
but the payment function was different. We could potentially also allow randomized mechanism
f:%x;0; = A(O) that map to a probability distribution over the outcome space.

How do we analyze what happens in a given mechanism? The ideal answer is that every agent
is best off reporting their true type, no matter what everybody else does, i.e. the mechanism should
be DSIC. Formally, that would mean that for every agent ¢, type 8; € ©;, any type vector 6_; of
the remaining agents, and misreported type 6} € ©;:

E [vi(f(6:,0-4))] > E [vi(f(6;,0-3))] ,

where the expectation is over the the potential randomness of the mechanism. If there is also a
payment function g and agents have quasi-linear utilities then the inequality is

E [vi(f(0:,0-:)) — g(6i,0—)] > E [vi(f(6;,0-)) — g(6;,6-5)] ,

A less satisfying answer is that there exists a Bayes-Nash equilibrium of the game induced by
the mechanism, in which every agent reports their true type. Formally, that would mean that for
every agent i, type 0; € ©;, and misreported type 0. € ©;:

E [v;(f(6:,0-5))] > E [vi(f(6;,0-5))] .

where the expectation is over the types 6_; of the other agents, and the potential randomness of
the mechanism. This constraint just says that reporting their true type should maximize their
expected utility, given that everybody else is truthfully reporting. This can likewise be generalized
for a payment function g.

In the setting where we can charge money, the Vickrey-Clarke-Groves (VCG) mechanism is
DSIC and maximizes social welfare. In VCG, after receiving the type vector 6, we pick the outcome
o that maximizes the report welfare. The key to then making this choice incentive compatible is
that we charge each agent their externality:

max » vy (0'0y) — E vy (0]0y).
o'e0 — "y
i/ #i i/ £



The externality measures how much better off all the other agents would have been if ¢ were not
there. When we add together the value received by player ¢ minus their payment, we get that their

utility function is:
Z v (0[0:) — glgg Z vir (0'1031)
4 i'#£i

Intuitively, we see that i cannot affect the negative term here, and the positive term is exactly the
social welfare. Thus we get that each agent i is incentivized to maximize social welfare, which is
achieved by reporting their true type 6;.

4 Historical Notes

The issues with first-price in the context of Overture’s sponsored search auctions is described
in Edelman and Ostrovsky [2], which also shows plots from real data exhibiting the sawtooth
pattern. The derivation of the symmetric equilibrium of the first-price auction follows the proof
from Krishna [5]. Interestingly, first-price auctions have experiences a resurgence in the context of
display advertising, where many independent ad exchanges moved to first price in 2018, and Google
followed suit and moved their Ad Manager to first price in 201@

The second-price auction is sometimes referred to as the Vickrey auction after its inventor [7].
The generalized second-price auction was described by Edelman et al. [3], though it had been in
use in the Internet ad industry for a while at that point. The VCG mechanism was described in
a series of papers by Vickrey [7], Clarke [1], and Groves [4]. A full description of a slightly more
general VCG mechanism, and proof of correctness, can be found in Nisan et al. [0, Chapter 9]
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