
Economics, AI, and Optimization

Lecture Note 5 Learning Equilibrium via Regret Minimization

Christian Kroer∗

February 1, 2022

1 Recap

We have covered a slew of no-regret algorithms: hedge, online mirror descent (OMD), regret match-
ing (RM), and RM+. All of these algorithms can be used for the case of solving two-player zero-sum
matrix games of the form minx∈∆n maxy∈∆m〈x,Ay〉. In this lecture note we will cover how to com-
pute a saddle point of the more general case of

min
x∈X

max
y∈Y

f(x, y)

where f is convex-concave, meaning that f(·, y) is convex for all fixed y, and f(x, ·) is concave for
all fixed x, and lower/upper semicontinuous. We will then look at some experiments on practical
performance for the matrix-game case. We will also compare to an algorithm that have stronger
theoretical guarantees.

2 From Regret to Nash Equilibrium

In order to use these algorithms for computing Nash equilibrium, we will run a repeated game
between the x and y players. We will assume that each player has access to some regret-minimizing
algorithm Rx and Ry (we will be a bit loose with notation here and implicitly assume that Rx and
Ry keep a state that may depend on the sequence of losses and decisions) The game is as follows:

• Initialize x1, y1 to be uniform distributions over actions

• At time t, let xt be the recommendation from Rx and yt be the recommendation from Ry

• Let Rx and Ry observe losses gt = f(·, yt), `t = f(xt, ·) respectively

X

Y

gt−1

`t−1

xt

yt `t

gt
X

Y

xt+1

yt+1 · · ·· · ·

Figure 1: The flow of strategies and losses in regret minimization for games.

∗Department of Industrial Engineering and Operations Research, Columbia University. Email:
christian.kroer@columbia.edu.

1



For a strategy pair x̄, ȳ, we will measure proximity to Nash equilibrium via the saddle-point
residual (SPR):

ξ(x̄, ȳ) :=

[
max
y∈Y

f(x̄, y)− f(x̄, ȳ)

]
+

[
f(x̄, ȳ)−min

x∈X
f(x, ȳ)

]
= max

y∈Y
f(x̄, y)−min

x∈X
f(x, ȳ).

Each bracketed term represents how much each player can improve by deviating from ȳ or x̄
respectively, given the strategy profile (x̄, ȳ). In game-theoretic terms the brackets are how much
each player improves by best responding.

Now, suppose that the regret-minimizing algorithms guarantee regret bounds of the form

max
y∈Y

T∑
t=1

f(xt, y)−
T∑
t=1

f(xt, yt) ≤ εy

T∑
t=1

f(xt, yt)−min
x∈X

T∑
t=1

f(x, yt) ≤ εx,

(1)

then the following folk theorem holds

Theorem 1. Suppose (1) holds, then for the average strategies x̄ = 1
T

∑T
t=1 xt, ȳ = 1

T

∑T
t=1 yt the

SPR is bounded by

ξ(x̄, ȳ) ≤ (εx + εy)

T
.

Proof. Summing the two inequalities in (1) we get

εx + εy ≥max
y∈Y

T∑
t=1

f(xt, y)−
T∑
t=1

f(xt, yt) +

T∑
t=1

f(xt, yt)−min
x∈X

T∑
t=1

f(x, yt)

= max
y∈Y

T∑
t=1

f(xt, y)−min
x∈X

T∑
t=1

f(x, yt)

≥T
[
max
y∈Y

f(x̄, y)−min
x∈X

f(x, ȳ)

]
,

where the inequality is by f being convex-concave.

So now we know how to compute a Nash equilibrium: simply run the above repeated game
with each player using a regret-minimizing algorithm, and the uniform average of the strategies
will converge to a Nash equilibrium.

Figure 2 shows the performance of the regret-minimization algorithms taught so far in the
course, when used to compute a Nash equilibrium of a zero-sum matrix game via Theorem 1. Per-
formance is shown on 3 randomized matrix game classes where entries in A are sampled according
to: 100-by-100 uniform [0, 1], 500-by-100 standard Gaussian, and 100-by-100 standard Gaussian.
All plots are averaged across 50 game samples per setup. We show one addition algorithm for
reference: the mirror prox algorithm, which is an offline optimization algorithm that converges to a
Nash equilibrium at a rate of O

(
1
T

)
. It’s an accelerated variant of mirror descent, and it similarly

relies on a distance-generating function d. The plot shows mirror prox with the Euclidean distance.

As we see in Figure 2, mirror prox indeed performs better than all the O
(

1√
T

)
regret minimizers

using the setup for Theorem 1. On the other hand, the entropy-based variant of OMD, which
has a log n dependence on the dimension n, performs much worse than the algorithms with

√
n

dependence.

2



● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Normal_100_100 Normal_500_100 Uniform_100_100

1 10 100 1000 1 10 100 1000 1 10 100 1000

0.001

0.010

0.100

1.000

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
● MP l2 uniform OMD entropy uniform OMD l2 uniform

RM RM+

Figure 2: Plots showing the performance of four different regret-minimization algorithms for com-
puting Nash equilibrium, all using Theorem 1. Mirror prox with uniform averaging is also shown
as a reference point.

3 Alternation

Let’s try making a small tweak now. We will consider what is usually called alternation. In
alternation, the players are no longer symmetric: one player sees the loss based on the previous
strategy of the other player as before, but the second player sees the loss associated to the current
strategy.

• Initialize x1, y1 to be uniform distributions over actions

• At time t, let xt be the recommendation from Rx

• The y player observes loss f(xt, ·)

• yt is the recommendation from Ry after observing f(xt, ·)

• The x player observes loss f(·, yt)

Suppose that the regret-minimizing algorithms guarantee regret bounds of the form

max
y∈Y

T∑
t=1

f(xt+1, y)−
T∑
t=1

f(xt+1, yt) ≤ εy

T∑
t=1

f(xt, yt)−min
x∈X

T∑
t=1

f(x, yt) ≤ εx.

(2)

Theorem 2. Suppose we run two regret minimizer with alternation and they give the guarantees
in (2). Then the average strategies x̄ = 1

T

∑T
t=1 xt+1, ȳ = 1

T

∑T
t=1 yt.

ξ(x̄, ȳ) ≤
εx + εy +

∑T
t=1 (f(xt+1, yt)− f(xt, yt))

T

3



Proof. As before we sum the regret bounds to get

εx + εy ≥max
y∈Y

T∑
t=1

f(xt+1, y)−
T∑
t=1

f(xt+1, yt) +

T∑
t=1

f(xt, yt)−min
x∈X

T∑
t=1

f(x, yt)

= max
y∈Y

T∑
t=1

f(xt+1, y)−min
x∈X

T∑
t=1

f(x, yt)−
T∑
t=1

[f(xt+1, yt)− f(xt, yt)]

≥T
[
max
y∈Y

f(x̄, y)−min
x∈X

f(x, ȳ)

]
−

T∑
t=1

[f(xt+1, yt)− f(xt, yt)]

Figure 3 shows the performance of the same set of regret-minimization algorithms but now
using the setup from Theorem 2. Mirror prox is shown exactly as before.

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Normal_100_100 Normal_500_100 Uniform_100_100

1 10 100 1000 1 10 100 1000 1 10 100 1000

0.001

0.010

0.100

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
● MP l2 uniform OMD entropy uniform alt OMD l2 uniform alt

RM alt RM+ alt

Figure 3: Plots showing the performance of four different regret-minimization algorithms for com-
puting Nash equilibrium, all using Theorem 2. Mirror prox with uniform averaging is also shown
as a reference point.

Amazingly, Figure 3 shows that with alternation, OMD with Euclidean DGF, regret matching,
and RM+ all performs about on par with mirror prox.

4 Increasing Iterate Averaging

Now we will look at one final tweak. In Theorems 1 and 2 we generated a solution by uniformly
averaging iterates. We will now consider polynomial averaging schemes of the form

x̄ =
1∑T
t=1 t

q

T∑
t=1

tqxt, ȳ =
1∑T
t=1 t

q

T∑
t=1

tqyt.

4



● ● ● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

Normal_100_100 Normal_500_100 Uniform_100_100

1 10 100 1000 1 10 100 1000 1 10 100 1000

1e−04

1e−03

1e−02

1e−01

1e+00

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
● MP l2 linear OMD l2 linear alt RM linear alt

RM+ alt RM+ linear alt

Figure 4: Plots showing the performance of four different regret-minimization algorithms for com-
puting Nash equilibrium, all using Theorem 2. All algorithms use linear averaging. RM+ with
uniform averaging is shown as a reference point.

Figure 4 shows the performance of the same set of regret-minimization algorithms but now
using the setup from Theorem 2 and linear averaging in all algorithms, including mirror prox. The
fastest algorithm with uniform averaging, RM+ with alternation, is shown for reference. OMD with
Euclidean DGF and RM+ with alternation both gain another order of magnitude in performance
by introducing linear averaging.

It can be shown that RM+, online mirror descent, and mirror prox, all work with polynomial
averaging schemes.

5 Historical Notes and Further Reading

The derivation of a folk theorem for alternation in matrix games was by Burch et al. [2], after
Farina et al. [4] pointed out that the original folk theorem does not apply when using alternation.
The general convex-concave case is new, although easily derived from the existing results.

The fact that Euclidean distance seems to perform better than entropy when solving matrix
games in practice has been observed in a few different algorithms both first-order methods [3, 6] and
regret-minimization algorithms [5]. The fact that OMD with Euclidean distance performs much
better after adding alternation has not been observed before.

Results for polynomial averaging schemes were shown by Tammelin et al. [7], Brown and Sand-
holm [1] for RM+, in Nemirovski’s lecture notes at https://www2.isye.gatech.edu/~nemirovs/
LMCO_LN2019NoSolutions.pdf for mirror descent and mirror prox, and for several other primal-
dual first-order methods by Gao et al. [6].

References

[1] Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

5

https://www2.isye.gatech.edu/~nemirovs/LMCO_LN2019NoSolutions.pdf
https://www2.isye.gatech.edu/~nemirovs/LMCO_LN2019NoSolutions.pdf


pages 1829–1836, 2019.

[2] Neil Burch, Matej Moravcik, and Martin Schmid. Revisiting cfr+ and alternating updates.
Journal of Artificial Intelligence Research, 64:429–443, 2019.

[3] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal–
dual algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

[4] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for se-
quential decision processes and extensive-form games. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 1917–1925, 2019.

[5] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Optimistic regret minimization for
extensive-form games via dilated distance-generating functions. In Advances in Neural Infor-
mation Processing Systems, pages 5222–5232, 2019.

[6] Yuan Gao, Christian Kroer, and Donald Goldfarb. Increasing iterate averaging for solving
saddle-point problems. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[7] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
Texas hold’em. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

6


	Recap
	From Regret to Nash Equilibrium
	Alternation
	Increasing Iterate Averaging
	Historical Notes and Further Reading

