
Lecture Note 8: Fair Allocation with Indivisible Goods

Christian Kroer∗

February 22, 2022

1 Introduction

In this lecture note we study the problem of performing fair allocation when the items are indivisible.
This setting presents a number of challenges that were not present in the divisible case.

It is obviously an important setting in practice. For example, the website http://www.spliddit.
org/ allows users to fairly split estates, financial assets, toys, or other goods. Another important
application is that of fairly allocating course seats to students. This setting is even more intricate,
because valuations in that setting are combinatorial. In order to design suitable mechanisms for
fairly dividing discrete goods, we will need to reevaluate our fairness concepts.

2 Setup

We have a set of m indivisible goods that we wish to divide among n agents. We assume that each
good has supply 1. We will denote the bundle of goods given to agent i as xi, where xij is the
amount of good j that is allocated to buyer i. The set of feasible allocations is then {x|

∑
i xij ≤

1, xij ∈ {0, 1}}
Unless otherwise specified, each agent is assumed to have a linear utility function ui(xi) = 〈vi, xi〉

denoting how much they like the bundle xi.

3 Fair Allocation

In the case of indivisible items, several of our fairness properties become much harder to achieve.
We will assume that we are required to construct a Pareto-efficient allocation.

Proportional fairness doesn’t even make sense anymore: it rested on the idea of assigning
each agent their fractional share 1

n of each item. There is however, a suitable generalization of
proportionality that does make sense for the indivisible case: the maximin share (MMS) guarantee:
For agent i, their MMS is the value they would get if they get to divide the items up into n bundles,
and are required to take the worst bundle. Formally:

max
x≥0

min
j
ui(xj)

s.t.
∑
i

xij ≤ 1, ∀j

xij ∈ {0, 1}, ∀i, j
∗Department of Industrial Engineering and Operations Research, Columbia University. Email:

christian.kroer@columbia.edu.

1

http://www.spliddit.org/
http://www.spliddit.org/

We say that an allocation x is an MMS allocation if every agent i receives utility ui(xi) that is
at least as high as their MMS guarantee. In the case of 2 agents, an MMS allocation always exists.
As an exercise, you might try to come up with an algorithm for finding such an allocation1

In the case of 3 or more agents, such a solution may not exist. The counterexample is very
involved, so we won’t cover it here.

Theorem 1. For n ≥ 3 agents, there exist additive valuations for which an MMS allocation does
not exist. However, an allocation such that each agent receives at least 3

4 of their MMS guarantee
always exists.

The original spliddit algorithm for dividing goods worked as follows: first, compute the α ∈ [0, 1]
such that every agent can be guaranteed an α fraction of their MMS guaranteee (this always ends
up being α = 1 in practice). Then, subject to the constraints ui(xi) ≥ αMMSi, a social welfare-
maximizing allocation was computed. However, this can lead to some weird results.

Example 1. Three agents each have valuation 1 for 5 items. In that case, the MMS guarantee is
1 for each agent. But now the social welfare-maximizing solution can allocate three items to agent
1, and 1 item each to agents 2 and 3. Obviously a more fair solution would be to allocate 2 items
to 2 agents, 1 item to the last agent.

One observation we can make about the 3/1/1 solution versus the 2/2/1 solution is that envy
is strictly higher in the 3/1/1/ solution.

With the above motivation, let us consider envy in the discrete setting. It is easy to see that we
generally won’t be able to get envy-free solutions if we are required to assign all items. Consider
2 agents splitting an inheritance: a house worth $500k, a car worth $10k, and a jewelry set worth
$5k. Since we have to give the house to a single agent, the other agent is guaranteed to have envy.
Thus we will need a relaxed notion of envy:

Definition 1. An allocation x is envy-free up to one good (EF1) if for every pair of agents i, k,
there exists an item j such that xkj = 1 and ui(xi) ≥ ui(xk − ek), where ek is the k’th basis vector.

Intuitively, this definition says that for any pair of agents i, k such that i envies k, that envy
can be removed by removing a single item from the bundle of k. Note that requiring EF1 would
have forced us to use the 2/2/1 allocation in Example 1.

For linear utilities, an EF1 allocation is easily found (if we disregard Pareto optimality). As
an exercise, come up with an algorithm for computing an EF1 allocation for linear valuations2 In
fact, EF1 allocations can be computed in polynomial time for any monotone set of utility functions
(meaning that if xi ≥ x′i then ui(xi) ≥ ui(x′i)).

However, ideally we would like to come up with an algorithm that gives us EF1 as well as
Pareto efficiency. To achieve this, we will consider the product of utilities, which we saw previously
in Eisenberg-Gale. This product is also called the Nash welfare of an allocation:

NW (x) =
∏
i

ui(xi)

1Solution: compute one of the solutions solutions to agent 1’s MMS computation problem. Then let agent 2
choose their favorite bundle, and give the other bundle to agent 1. Agent 1 clearly receives their MMS guarantee, or
better. Agent 2 also does: their MMS guarantee is at most 1

2
‖v2‖1, and here they receive utility of at least 1

2
‖v2‖1.

2This is achieved by the round-robin algorithm: simply have agents take turns picking their favorite item. It is
easy to see that EF1 is an invariant of the partial allocations resulting from this process.

2

The max Nash welfare (MNW) solution picks an allocation that maximizes NW (x):

max
x

∏
i

ui(xi)

s.t.
∑
i

xij ≤ 1,∀j

xij ∈ {0, 1}, ∀i, j

Note that here we have to worry about the degenerate case where NW (x) = 0 for all x, meaning
that it is impossible to give strictly positive utility to all agents. We will assume that there exists
x such that NW (x) > 0. If this does not hold, typically one seeks a solution that maximizes the
number of agents with strictly positive utility, and then the largest MNW achievable among subsets
of that size is chosen.

The MNW solution turns out to achieve both Pareto optimality (obviously, since otherwise it
would not solve the MNW optimization problem), and EF1:

Theorem 2. The MNW solution for linear utilities is Pareto optimal and EF1.

Proof. Let x be the MNW solution. Say for contradiction that agent i envies agent k by more
than one good. Let j be the item allocated to agent k that minimizes the ratio

vkj
vij

. Let x′ be

the same allocation as x, except that x′ij = 1, x′kj = 0. The proof is concluded by showing that
NW (x′) > NW (x), which contradicts optimality of x for the MNW problem.

Using the linearity of utilities we have ui(x
′
i) = ui(xi) + vij and uk(x′k) = uk(xk) − vkj . Every

other utility stays the same. Now we have

NW (x′)

NW (x)
> 1

⇔
[ui(xi) + vij] · [uk(xk)− vkj]

ui(xi)uk(xk)
> 1

⇔
[
1 +

vij
ui(xi)

]
·
[
1−

vkj
uk(xk)

]
> 1

⇔
vkj
vij

[ui(xi) + vij] < uk(xk) (1)

By how we choose j we have

vkj
vij
≤
∑

j′∈xk
vkj′∑

j′∈xk
vij′
≤ uk(xk)

ui(xk)
,

and by the envy property we have

ui(xi) + vij < ui(xk).

Now we can multiply together the last two inequalities to get (1).

The MNW solution also turns out to give a guarantee on MNW, but not a very strong one:
every agent is guaranteed to get 2

1+
√
4n−3 of their MMS guarantee, and this bound is tight. Luckily,

in practice the MNW solution seems to fare much better. On Spliddit data, the following ratios are
achieved. In the table below are shown the MMS approximation ratios across 1281 “divide goods”
instances submitted to the Spliddit website for fairly allocating goods

MMS approximation ratio intervals [0.75, 0.8) [0.8, 0.9) [0.9, 1) 1

% of instances in interval 0.16% 0.7% 3.51% 95.63%
Over 95% of the instances have every player receive their full MMS guarantee.

3

4 Computing Discrete Max Nash Welfare

4.1 Complexity

The problem of maximizing Nash welfare is generally not easy. In fact, the problem turns out to
be not only NP-hard, but NP-hard to approximate within a factor µ ≈ 1.00008 (the best currently-
known approximation factor is 1.45, so the gap between 1.00008 and 1.45 is open).

The reduction is based the vertex-cover problem on 3-regular graphs, which is NP-hard to
approximate within factor ≈ 1.01. A 3-regular graph is a graph where each vertex has degree 3.

The proof is not particularly illuminating, so we will skip it here. However, let’s see a quick
way to prove a simpler statement: that the problem is NP-hard even for 2 players with identical
linear valuations. Consider the following

Definition 2. Partition problem: you are given a multiset of integers S = {s1, . . . , sm} (poten-
tially with duplicates), and your task is to figure out if there is a way to partition S into two sets
S1, S2 such that

∑
i∈S1

si =
∑

i∈S2
s2.

We may now construct an MNW instance as follows: we create two agents and m items. Each
agent has value sj for item j. Now by the AM-GM inequality (2d case:

√
xy ≤ x+y

2 , with equality
iff x = y) there exists a correct partitioning if and only if the MNW allocation has value (12

∑
j sj)

2.
This result can be extended to show strong NP-hardness by considering the k-equal-sum-

subset problem: given a multiset S of x1, . . . , xn positive integers, are there k nonempty disjoint
subsets S1, . . . , Sk ⊂ S such that sum(S1) = . . . = sum(Sk). The exact same reduction as before
works, but with k agents rather than 2.

4.2 Algorithms

Given these computational complexity problems, how should we compute an MNW allocation in
practice?

We present two approaches here. First, we can take the log of the objective, to get a concave
function. After taking logs, we get the following mixed-integer exponential-cone program:

max
∑
i

log ui

s.t. ui ≤ 〈vi, xi〉, ∀i = 1, . . . , n∑
i

xij ≤ 1, ∀j = 1, . . . ,m

xij ∈ {0, 1}, ∀i, j

(2)

This is simply the discrete version of the Eisenberg-Gale convex program. One approach is to solve
this problem directly, e.g. using Mosek.

Alternatively, we can impose some additional structure on the valuation space: if we assume
that all valuations are integer-valued, then we know that ui(xi) will take on some integer value in
the range 0 to ‖vi‖1. In that case, we can add a variable wi for each agent i, and use either (1)
the linearization of the log at each integer value, or (2) the linear function from the line segment
(log k, k), (log(k+ 1), k+ 1), as upper bounds on wi. This gives 1

2‖vi‖1 constraints for each i using
the line segment approach (the linearization uses twice as many constraints), but ensures that
wi is equal to log〈vi, xi〉 for all integer-valued 〈vi, xi〉. Using the line segment approach gives the

4

following mixed-integer linear program (MILP):

max
∑
i

wi

s.t. wi ≤ log k + [log(k + 1)− log k]× (〈vi, xi〉 − k), ∀i = 1, . . . , n, k = 1, 3, . . . , ‖vi‖1∑
j

vijxij ≥ 1, ∀i∑
i

xij ≤ 1, ∀j = 1, . . . ,m

xij ∈ {0, 1}, ∀i, j
(3)

These two mixed-integer programs both have some drawbacks: For the first mixed-integer
exponential-cone program, we must resort to much less mature technology than for mixed-integer
linear programs. On the other hand, the discrete EG program is reasonably compact: the program
is roughly the size of a solution. For the MILP, the good news is that MILP technology is quite
mature, and so we might expect this to solve quickly. On the other hand, adding n×‖vi‖1 additional
constraints can be quite a lot, and could lead to slow LP solves as part of the branch-and-bound
procedure.

Figure 1 shows the performance of the two approaches.

● ● ● ● ● ● ●

●

●

●

0

50

100

150

10 20 30 40 50

num agents

R
un

tim
e Algo

● eg_runtime

mip_runtime

Figure 1: Plot showing the runtime of discrete Eisenberg-Gale and the MILP approach.

5 Historical Notes

The maximin share was introduced by Budish [2]. The results on nonexistence of MMS allocation,
and an approximation guarantee of 2

3 were given by Kurokawa et al. [7]. The approximation
guarantee was improved to 3

4 by Ghodsi et al. [6]. The application of MNW to fair division was
proposed by Caragiannis et al. [3].

A really nice overview talk targeted at a technical audience is given by Ariel Procaccia here:
https://www.youtube.com/watch?v=7lUtS-l9ytI. Most of the material here is based on his
excellent presentations of these topics.

The 1.00008 inapproximability result was by Lee [8]. The 1.45-approximation algorithm was
given byBarman et al. [1]. Strong NP-hardness of k-equal-sum-subset is shown in Cieliebak et al.
[5].

5

https://www.youtube.com/watch?v=7lUtS-l9ytI

The MILP using approximation to the log at each integer point was introduced by Caragiannis
et al. [4]. At the time, Mosek did not support exponential cones, and so they did not compare to
the direct solving of discrete Eisenberg-Gale. The results shown here are the first direct comparison
of the two, as far as I know.

References

[1] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages
557–574, 2018.

[2] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[3] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. In Proceedings of the
2016 ACM Conference on Economics and Computation, pages 305–322. ACM, 2016.

[4] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum nash welfare. ACM Transactions on
Economics and Computation (TEAC), 7(3):1–32, 2019.

[5] Mark Cieliebak, Stephan J Eidenbenz, Aris Pagourtzis, and Konrad Schlude. On the complexity
of variations of equal sum subsets. Nord. J. Comput., 14(3):151–172, 2008.

[6] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and
Hadi Yami. Fair allocation of indivisible goods: Improvements and generalizations. In Proceed-
ings of the 2018 ACM Conference on Economics and Computation, pages 539–556, 2018.

[7] David Kurokawa, Ariel D Procaccia, and Junxing Wang. Fair enough: Guaranteeing approxi-
mate maximin shares. Journal of the ACM (JACM), 65(2):1–27, 2018.

[8] Euiwoong Lee. Apx-hardness of maximizing nash social welfare with indivisible items. Infor-
mation Processing Letters, 122:17–20, 2017.

6

	Introduction
	Setup
	Fair Allocation
	Computing Discrete Max Nash Welfare
	Complexity
	Algorithms

	Historical Notes

