
IEOR8100: Economics, AI, and Optimization

Lecture Note 10: Strategyproof Fair Division and Dominant

Resource Fairness

Christian Kroer∗

March 11, 2020

1 Introduction

In this lecture note we start the study of strategyproofness. So far in fair division, we did not worry
about the following crucial aspect: we might not necessarily know the utility function ui of each
agent. Instead, we would often need to elicit ui from agent i. In that case, we need to worry about
whether each agent will actually tell us their true ui. If they can tell us some other u′i which leads
to a better outcome for agent i, then we should not expect them to tell us ui. This can lead to
several serious issues: first, we cannot expect to maximize an objective that depends on ui if we
optimize for the wrong u′i. Second, the market can be extremely volatile if agents are constantly
shifting their behavior in order to best misreport based on what everybody else is doing. Third, it
disadvantages agents that for one reason or another cannot strategize as effectively.

2 Setting and Strategyproofness

As before, we study fair division problems with the following setup: we have a set of m infinitely-
divisible goods that we wish to divide among n agents. Without loss of generality we may assume
that each good has supply 1. We will denote the bundle of goods given to agent i as xi, where xij is
the amount of good j that is allocated to agent i. Each agent has some utility function ui(xi) ∈ R+

denoting how much they like the bundle xi. We shall use x to denote an assignment of goods to
agents.

As a running example in this note we will use the setting of sharing compute resources.

Definition 1 (Compute-resource setting). In this setting we assume that each user has a specific
type of task that they wish to run on a compute cluster. Each user’s utility is linear in the (frac-
tional) amount of tasks they complete. A task is parameterized by a vector {dij}j, where dij > 0
is the amount of good j (in this setting goods are also called resources) that agent i needs in order
to run one unit of their task. It is assumed without loss of generality that dij ≤ 1 for all i, j, and
that for all i there exists some j such that dij = 1, we call this the dominant resource for user i (if
there is more than one such j then we pick one arbitrarily and label it the dominant resource). This

∗Department of Industrial Engineering and Operations Research, Columbia University. Email:
christian.kroer@columbia.edu.

1



setting is equivalent to the Leontief utilities that were previously discussed under the Eisenberg-Gale
convex program. Formally, an agent’s utility ends up being:

ui(xi) = min
j

xij
dij

,

which is simply the number of tasks they are able to run.

As an example, consider an agent that needs 2 units of CPU and 1 unit of RAM in order to
run their task (this would be represented as

(
1, 12
)
). This agent would be indifferent between the

allocations (4, 2) and (5, 2), since they are RAM-constrained on both allocations and can do nothing
with the additional unit of CPU.

We now ask what may happen when agents can misreport their preferences. As a first example,
we will consider two real-world mechanisms that are easily gamed. A popular approach in scheduling
systems is to view resources simply as fixed slots, where a slot comes with a fixed amount of CPU,
RAM, etc. Allegedly, a Yahoo! Hadoop MapReduce datacenter was designed with a fixed number
of two slot types: map slots and reduce slots (map methods typically do things like filtering or
sorting data, while reduce operations perform summary operations). A user discovered that map
slows were much more constrained than reduce slots, and exploited this by writing very heavy
reduce methods that also performed the work that would typically be done in the map method.

We now give an example showing that the CEEI mechanism is not strategyproof for the
compute-resource setting.

Example 1. Consider a compute-resource setting with two resources. User 1 has weights
(
1, 1

16

)
and user 2 has weights

(
1
2 , 1
)
. The CEEI allocation allows user 1 to solve 16

31 tasks and user 2 to
solve 30

31 tasks. If user 1 instead reports weights
(
1, 12
)

then the assignment is 2
3 tasks for each user,

thus increasing the utility of user 1.

Even outside Leontief utilities, CEEI and market equilibria can in general be manipulated when
agents report their utility functions. From the market equilibrium perspective, one way to think of
it is that by misreporting, agents may change prices on certain goods in a way that favors them.

3 Dominant Resource Fairness Mechanism

In the compute-resource setting, it turns out that there is a fair division approach that achieves
all the properties that we previously obtained for CEEI, while maintaining strategyproofness. Just
to recall, remember that we wanted Pareto optimality (every other allocation makes at least one
agent worse off, unless all utilities are the same), no envy (each agent prefers their own bundle to
that of any other agents), and proportionality (each agent is at least as happy as they would be
when assigned 1

n of each good).
The dominant resource fairness (DRF) mechanism allocates to each agent proportional to their

weight vector di times a scalar α > 0 that is chosen such that the allocation becomes feasible. The
allocation to agent i is thus xi = αdi. The scalar α is chosen as

α =
1

maxj
∑

i dij
,

which is the largest possible value for maintaining feasibility, given our choice of allocation propor-
tional to di.

It turns out that in the compute-resource setting DRF satisfies all the criteria we specified.

2



Theorem 1. DRF satisfies Pareto optimality, no envy, proportionality, and strategyproofness for
Leontief utilities where dij > 0 for all i, j.

Proof. Let x be the DRF allocation.
Pareto optimality: in order to keep everybody at least as happy as under x, any alternative

allocation x′ must satisfy x′ij ≥ xij for all i, j. But this means that only goods not allocated under
x can be used to try to improve, and by our choice of α and the fact that dij > 0 for all i, j, we
have that some item is constraining every agent’s utility.

No envy: Consider a pair of agents i, i′. Now consider the dominant resource j such that dij = 1.
We have that dij = 1 ≥ di′j , which implies that xij = αdij ≥ αdi′j = xi′j , and thus due to the
Leontief utilities, i likes their own bundle at least as well as that of i′.

Proportionality: We have α ≥ 1
n , since choosing 1

n is guaranteed to be feasible, as dij ≤ 1 for
all i, j. Thus every agent gets at least as much of their dominant resource under αdi as under the
1
n , and for the proportional allocation their dominant resource is their constraining item.

Strategyproofness: Consider any report d−i of weights for other agents. Now consider the
truthful report di and any misreport d′i, with associated allocations x, x′. First consider the case
where α′ ≤ α. In that case, agent i gets less of their dominant resource and so their utility does
not improve. Second, if α′ > α then consider the item j such that

∑
i xij = 1. Under α′ agent i

must get strictly less of i, since every other agent consumes strictly more of j, and thus their utility
decreases.

Thus, DRF for the compute-resource setting satisfies all the desiderata we stipulated. However,
in practice we won’t know all of the items and goods up front. Instead, users would typically arrive
over time and we would only learn the utility function of a given agent when they submit their
tasks. We now consider that setting.

4 Dynamic DRF

Formally, we consider a model where the number of goods m is known in advance, and the total
number of users n is known. However, each user i does not reveal their utility function weights di
until they arrive (we still assume dij > 0 for all i, j). The users arrive in index order 1, 2, . . . , n,
and at time k we have k users in the system, and we must perform an allocation xk of the m goods
to the k users currently present. Crucially, the dynamic DRF setting assumes that resources are
irrevocable, and so xk+1

ij ≥ xkij is a constraint on the allocation at time k + 1.
A natural goal in dynamic DRF is to extend the four properties satisfied by DRF to the dynamic

setting. The properties and their dynamic counterparts are listed in the table below

3



Property Static (DRF) Dynamic

Envy free No agent wishes to swap
with another agent:
ui(xi) ≥ ui(xi′), ∀i, i′

No agent present at time
k wishes to swap with any
other agent present at time k:
ui(x

k
i ) ≥ ui(xki′), ∀i, i′ ≤ k.

Proportionality xi is at least as good as
the proportional 1

n allocation:

ui(xi) ≥ ui(~1 1
n), ∀i

At every timestep k, we
satisfy proportionality:
ui(x

k
i ) ≥ ui(~1 1

n), ∀i ≤ k
Strategyproofness No gains by misreporting No gains by misreporting at any

time step

Pareto optimality No Pareto-improving alloca-
tion

No Pareto-improving allocation
that uses at most k

n of every re-
source

It turns out that the above desiderata put strong constraints on the types of dynamic allocations
we may consider.

First, in order to satisfy dynamic Pareto optimality (DPO) at time k, it is easy to see that at
least one good must use at least k

n of its supply. If this does not hold, some agent can be allocated
an ε amount of every item, and thereby increase their utility.

Secondly, dynamic proportionality requires us to use at most k
n of every good at time k. Say

we used more than k
n of some good j, then the remaining agents k + 1, . . . , n could show up with

j as their dominant resource, and we would not be able to maintain dynamic proportionality for
those agents.

We get from the above two paragraphs that our allocation mechanism must be such that the
item (or items) with the highest amount allocated at time k must have exactly k

n of their supply
allocated.

However, it turns out that envy freeness is incompatible with DPO.

Theorem 2. Let n ≥ 3,m ≥ 2. Then no dynamic allocation mechanism satisfies envy freeness
and DPO.

Proof. Let n = 3,m = 2. Agents 1 and 2 have utility vectors d1 = (1, 19) and d2 = (19 , 1) respectively.
At timestep 2, either item 1 or 2 must have 2

3 of their supply allocated in order to satisfy DPO.
Then either agent 1 or 2 must be allocated at least x = 3

5 of their dominant item, since x+ 1
9x = 2

3 .
If this does not hold then we could Pareto improve by allocating more to either one of the agents.
Say agent 1 gets at least 3

5 of item 1 without loss of generality. Now when the third agent arrives,
say they also have utility vector d3 = (1, 19). Then we can give them at most 2

5 of item 1, and thus
they envy agent 1.

The argument extends easily to more agents by adding duplicates of agent 3 and showing a
similar envy condition. More items can be added simply by having each agent require a negligible
amount of each additional item.

Thus it is unfortunately impossible to get every condition that we care about. Instead we
will have to either drop or relax some of the conditions. If we were to drop DPO, there is a
trivial mechanism satisfying the remaining desiderata: perform the proportional allocation to every
agent k at time k. This clearly satisfies envy freeness, strategyproofness, and proportionality.
Similarly, if we drop envy freeness, then the following dynamic dictator mechanism achieves DPO,
strategyproofness, and proportionality: at time k, allocate to agent k 1

ndi. If k > 1, proceed to

allocate items to agent 1 proportional to d1 until some item has used k
n of its supply. As an exercise,

prove that this is strategyproof and DPO (it clearly satisfies proportionality).

4



Instead of completely dropping either envy freeness or DPO we can try to relax them. First, let
us consider relaxing envy freeness. We know that there will generally be envy in our allocations.
But at time k, if agent i < k is envied by others, then we probably should not be allocating more
goods towards agent i before fixing the envy. This motivates

Definition 2 (Dynamic envy freeness (DEF)). If agent i envies agent i′, then agent i′ must have
arrived before agent i, and i′ must not have been allocated any resources since i arrived.

It turns out that DEF, DPO, strategyproofness, and proportionality, is maintained by the
following mechanism, called dynamic DRF : at time k, we have some previous allocation xk−1 that
we must respect. Now continuously allocate towards each agent that has the minimum dominant
share at the same rate, until a k

n fraction of at least one good is allocated. By allocating in this
fashion, we ensure that no agent which is currently envied ever gets any allocation. This “water-
filling” algorithm is a natural dynamic extension of the DRF mechanism (where we increased all
allocations at the same rate, proportional to the dis).

The correct allocation at each time-step k can be computed via linear programming.

5 Historical Notes

Ghodsi et al. [1] introduced the concept of dominant-resource fairness, in the context of fairly
dividing multiple resource types, specifically motivated by compute-cluster resource sharing. Most
of the examples given here are from that paper. Parkes et al. [3] extend the original DRF paper
by proving that DRF satisfies group strategyproofness and giving several other extensions as well
as more formal proofs. Kash et al. [2] introduce the dynamic setting and provide the impossibility
result described here, the dynamic DRF mechanism, as well as a mechanism for handling relaxed
DPO.

References

[1] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: Fair allocation of multiple resource types. In Nsdi, volume 11, pages
24–24, 2011.

[2] Ian Kash, Ariel D Procaccia, and Nisarg Shah. No agent left behind: Dynamic fair division of
multiple resources. Journal of Artificial Intelligence Research, 51:579–603, 2014.

[3] David C Parkes, Ariel D Procaccia, and Nisarg Shah. Beyond dominant resource fairness:
Extensions, limitations, and indivisibilities. ACM Transactions on Economics and Computation
(TEAC), 3(1):1–22, 2015.

5


	Introduction
	Setting and Strategyproofness
	Dominant Resource Fairness Mechanism
	Dynamic DRF
	Historical Notes

