
IEOR8100: Economics, AI, and Optimization

Lecture Note 11: Introduction to Auctions

Christian Kroer∗

March 30, 2020

1 Introduction

In fair division we initially did not worry about the fact that we might not necessarily know the
utility function ui of each agent. We briefly studied settings where agents may misreport their
valuation in the context of dominant-resource fairness. In this lecture note we continue the study
of settings where we will worry about whether agents tell the truth or not. The general study of
this type of setting is called mechanism design.

We will study the most classical mechanism-design setting: auctions. We will start by consid-
ering single-item auctions: there is a single good for sale, and there is a set of n buyers, with each
buyer having some value vi for the good. The goal will be to sell the item via a sealed-bid auction,
which works as follows:

1. Each bidder i submits a bid bi ≥ 0, without seeing the bids of anyone else.

2. The seller decides who gets the good based on the submitted bids.

3. Each buyer i is charged a price pi which is a function of the bid vector b.

A few things in our setup may seem strange. First, most people would not think of sealed bids
when envisioning an auction. Instead, they typically envision what’s called the English auction. In
the English auction, bidders repeatedly call out increasing bids, until the bidding stops, at which
point the highest bidder wins and pays their last bid. This auction can be conceptualized as having
a price that starts at zero, and then rises continuously, with bidders dropping out as they become
priced out. Once only one bidder is left, the increasing price stops and the item is sold to the last
bidder at that price. This auction format turns out to be equivalent to the second-price sealed-bid
auction which we will cover below. Another auction format, which is less prevalent in practice, is to
start the price very high such that nobody is interested, and then continuously dropping the price
until some bidder says they are interested, at which point they win the item at that price. The
Dutch auction is likewise equivalent to the first-price sealed-bid auction, which we cover below.

Secondly, it would seem natural to always give the item to the highest bid in step 2, but this
is not always done (though for now we will always use that rule). Thirdly, the pricing step allows
us to potentially charge more bidders than only the winner. This is again done in some reasonable
auction designs, though we will mostly focus on auction formats where pi = 0 if i does not win.
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1.1 First-price auctions

First-price auctions are perhaps what most people imagine when we say that we are selling our
good via a sealed-bid auctions. In first-price auctions, each buyer submits some bid bi ≥ 0, and
then we allocate the item to the buyer i∗ with the highest bid and charge that buyer bi∗ . This is
also sometimes referred to as pay-your-bid.

Let’s briefly try to reason about what might happen in a first-price auction. Clearly, no buyer
should bid their true value for the good under this mechanism; in that case they receive no utility
even when they win. Instead, buyers should shade their bids, so that they sometimes win while
also receiving strictly positive utility. The problem is that buyers must strategize about how other
buyers will bid, in order to figure out how much to shade by.

This issue of shading and guessing what other buyers will bid happened in early Internet ad
auctions, where first-price auctions were initially adopted. Overture was an early pioneer in selling
Internet sponsored search ads via auction. They initially ran first-price auctions, and provided
services to MSN and Yahoo (which were popular search engines at the time). Bidding and pricing
turned out to be very inefficient, because buyers were constantly changing their bids in order to
best respond to each other. Plots of the price history show a clear “sawtooth pattern,” where a
pair of bidders will take turns increasing their bid by 1 cent each, in order to beat the other bidder.
Finally, one of the bidders reaches their valuation, at which point they drop their bid much lower
in order to win something else instead. Then, the winner realizes that they should bid much lower,
in order to decrease the price they pay. At that point, the bidder that dropped out starts bidding
1 cent more again, and the pattern repeats. This leads to huge price fluctuations, and inefficient
allocations, since about half the time the item goes to the bidder with the lower valuation.

All that said, it turns out that there does exist at least one interesting characterization of how
bidding should work in a single-item first-price auction (the Overture example technically consists
of many “independent” first-price auctions; though that independence does not truly hold as we
shall see later).

For this characterization, we assume the following symmetric model: we have n buyers as
before, and buyer i assigns value vi ∈ [0, ω] for the good. Each vi is sampled IID from an increasing
distribution function F . F is assumed to have a continuous density f and full support. Each bidder
knows their own value vi, but only knows that the value of each other buyer is sampled according
to F .

Given a bid bi, buyer i earns utility vi − bi if they win, and utility 0 otherwise. If there are
multiple bids tied for highest then we assume that a winner is picked uniformly at random among
the winning bids, and only the winning bidder pays.

It turns out that there exists a symmetric equilibrium in this setting, where each bidder bids
according to the function

β(vi) = E[Y1|Y1 < vi],

where Y1 is the random variable denoting the maximum over n − 1 independently-drawn values
from F .

Theorem 1. If every bidder in a first-price auction bids according to β then the resulting strategy
profile is a Bayes-Nash equilibrium.

Proof. Let G(y) = F (y)n−1 denote the distribution function for Y1.
Suppose all bidders except i bids according to β. The function β is continuous and monotonically

increasing: a higher value for vi simply adds additional values to the highest end of the distribution.
As a consequence, the highest bid other than that of bidder i is β(Y1). It follows that bidder i
should never bid more than β(ω), since that is the highest possible other bid. Now consider bidding
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bi ≤ β(ω). Letting z be such that β(z) = bi, the expected value that bidder i obtains from bidding
bi is:

Π(bi, vi) =G(z)[vi − β(z)]

=G(z)vi −G(z)E[Y1|Y1 < z] by definition of β(z)

=G(z)vi −
∫ z

0
yg(y)dy by definition of expectation

=G(z)vi −G(z)z +

∫ z

0
G(y)dy integration by parts

=G(z)(vi − z) +

∫ z

0
G(y)dy

Now we can compare the values from bidding β(vi) and bi:

Π(β(vi), vi)−Π(bi, vi) = G(vi)(vi − vi) +

∫ vi

0
G(y)dy −G(z)(vi − z)−

∫ z

0
G(y)dy

= G(z)(z − vi)−
∫ z

vi

G(y)dy

If z ≥ vi then this is clearly positive sinceG(z) ≥ G(y) for all y ∈ [vi, z]. If z ≤ vi, thenG(z) ≤ G(y),
and so we have a negative number and subtract a more negative number.

A nice property that follows from the monotonicity of β is that the item is always allocated to
the bidder with the highest valuation, and thus the symmetric equilibrium is efficient.

1.2 Second-price auctions

Now we look at another pricing rule: the second-price auction. The second-price auction turns
out to simply allow buyers to submit their true value as their bid. In a second-price auction, the
winning bidder i∗ is charged the second-highest bid. It’s easy to see that a bidder should simply
bid their valuation in this auction format. There are four cases to consider for a non-truthful bid
bi 6= vi:

1. bi > vi ≥ b2 where b2 is the second-highest bid. In that case buyer i would have gotten the
same utility from bidding vi.

2. bi > b2 > vi where b2 is the second-highest bid. In that case buyer i wins, but gets utility
vi − b2 < 0, and they would have been better off bidding their valuation.

3. bi < b2 < vi where b2 is the second-highest bid. In that case buyer i does not win, but they
could have won and gotten strictly positive utility if they had bid their valuation.

4. b2 < bi < vi where b2 is the second-highest bid. In that case buyer i wins, but they would
have won, and paid the same, if they had bid their true value.

It follows that the second-price auction is strategyproof, which is also called dominant-strategy
incentive compatible, because an agent should report their true valuation no matter what everybody
else does.
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Figure 1: Left: A Google query for “mortgage” shows 2 ads. Organic search results follow further
down. Right: The front page of Reddit. The second feed story is an ad.

1.3 Sponsored Search Auctions

First and second-price auctions are natural to think of due to traditional ideas of what auctions
are. However, in the modern Internet era new types of auction settings have become prevalent that
go beyond single-item auctions. This is largely due to Internet advertising, which funds essentially
the entirety of Google as well as Facebook and other free major Internet services such as Twitter
and Reddit. In these auctions there are multiple reasons why we cannot simply analyze single-
item auctions as above. Two major reasons are: 1) advertisers participate in millions of auctions
and have budgets that span across these auctions, and 2) each individual auction typically has
multiple ad slots for sale. We will now investigate the second reason, while the first reason will be
investigated in the next lecture note.

The classical example of a sponsored search auction is a Google query, where a few ads (typically
2) are shown at the top of the search. Figure 1 on the left shows an example search for the keyword
“mortgage.” The sponsored search auction model can also be used to approximate other settings
such as the insertion of ads in a feed. For example, Reddit typically inserts 1 ad in the set of visible
results before scrolling (see Figure 1 on the right), with another ad appearing in the next 10-15
results (tested March 28th 2020). Similarly, Facebook and Twitter insert 1-2 sponsored posts near
the top of the feed. Truly capturing feed auctions does require some care, however. The assumption
of there being a fixed number of items is incorrect for that setting. Instead, the number of ads
shown depends on how far the user scrolls, the size of the ads, and what else is being shown in
terms of organic content.

In the sponsored search auction model, a set of k slots are for sale. The slots are shown in
ranked order, and the value that an advertiser derives from showing their ad in a particular slot
j decomposes into two terms vij = ciqj where ci is the value that the advertiser places on a user
clicking on their ad, and qj is the advertiser-independent click probability of slot j. It is assumed
that q1 ≥ q2 ≥ · ≥ qk, i.e. the top slot is better than the second slot, and so on. It is assumed
that advertisers are not inherently interested in getting their ad shown. Instead, their goal is to
get the user to click on the ad. Hence, our auction design will only charge an advertiser if their ad
is shown.

The generalized second-price (GSP) auction sells the k slots as follows: we collect a set of bids
b ∈ Rn (assume n ≥ k). Then we sort b (say in the order b1 ≥ b2 ≥ · · · ≥ bn), and allocate the
slots in order of bids (so b1 gets slot 1, up to bid bk getting slot k). If the user clicks on ad i ≤ k,
then advertiser i is charged the next-highest bid bi+1. GSP generalizes second-price auctions in the
sense that if k = 1 then this auction format is equivalent to the standard second-price auction (if
we take expected values in lieu of the pay-per-click model).
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2 Historical Notes

The issues with first-price in the context of Overture’s sponsored search auctions is described
in Edelman and Ostrovsky [1], which also shows plots from real data exhibiting the sawtooth
pattern. The derivation of the symmetric equilibrium of the first-price auction follows the proof
from Krishna [3]. Interestingly, first-price auctions have experiences a resurgence in the context of
display advertising, where many independent ad exchanges moved to first price in 2018, and Google
followed suit and moved their Ad Manager to first price in 20191.

The second-price auction is sometimes referred to as the Vickrey auction after its inventor [4].
The generalized second-price auction was described by Edelman et al. [2], though it had been in
use in the Internet ad industry for a while at that point.
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1see https://www.blog.google/products/admanager/update-first-price-auctions-google-ad-manager/
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