
IEOR8100: Economics, AI, and Optimization

Lecture Note 14: Large-Scale Fisher Market Equilibrium

Christian Kroer∗

April 21, 2020

1 Introduction

We saw that market equilibrium comes up in Internet scale settings such as fair recommender sys-
tems and budget-smoothed auctions (via pacing equilibrium). In this lecture note we will look at
methods for computing market equilibrium at scale. In particular, we will consider two complemen-
tary approaches: 1) how to run fast iterative methods in order to compute a market equilibrium,
and 2) how to abstract the market, either down to a manageable size, or in order to deal with
incomplete valuations.

2 Setup Recap

As in previous lecture notes, we study Fisher markets: we have a set of m infinitely-divisible goods
that we wish to divide among n buyers. Without loss of generality we assume that each good has
supply 1. We will denote the bundle of goods given to buyer i as xi, where xij is the amount of
good j that is allocated to buyer i. We shall use x to denote an assignment of goods to buyers.
Each buyer is endowed with a budget Bi of currency.

Each buyer is assumed to have a linear utility function ui(xi) = 〈vi, xi〉 denoting how much
they like the bundle xi. The results in this lecture note all carry over to quasi-linear utilities
ui(xi, p) = 〈vi − p, xi〉 unless otherwise noted. Since we will be solving the Eisenberg-Gale convex
program, the quasi-linear results also carry over to computing a first-price pacing equilibrium.

As mentioned in a prior note, a market equilibrium is a set of prices p ∈ Rm+ for each of the m
goods, as well as an allocation x of goods to buyers such that everybody is assigned an optimal
allocation given the prices and their budget. Formally, the demand set of an buyer i with budget
Bi is

D(p) = argmaxxi≥0ui(xi) s.t. 〈p, xi〉 ≤ Bi
A market equilibrium is an allocation-price pair (x, p) s.t. xi ∈ D(p) for all buyers i, and

∑
i xij = 1.

3 Interlude on Convex Conjugates

Given a function f : Rn → R we say that its convex conjugate is the function

f∗(y) = sup
x
〈y, x〉 − f(x)

∗Department of Industrial Engineering and Operations Research, Columbia University. Email:
christian.kroer@columbia.edu.

1



We will be interested in the convex conjugate of the function f(x) = − log x. We get

f∗(y) = sup
x

yx+ log x

and using first-order optimality we get x∗ = −1/y, so we get that for y < 0

f∗(y) = −1 + log(−1/y) = −1− log(−y) (1)

4 Duals of the Eisenberg-Gale Convex Program

In a previous lecture we saw that the following convex program, which we called the Eisenberg-Gale
convex program (EG) yields a market equilibrium for Fisher markets with linear utilities:

max
x≥0

∑
i

Bi log ui Dual variables

s.t. ui ≤ 〈vi, xi〉, ∀i = 1, . . . , n, βi∑
i

xij ≤ 1, ∀j = 1, . . . ,m, pj

(EG)

Remember that xi ∈ Rm is the allocation for buyer i, and ui is the utility.
We will now show how to derive the dual of this convex, and eventually use a further duality step

to derive an interesting and very practical algorithm for solving EG. We introduce dual variables βi
(corresponding to the utility price of buyer i), and pj (the price of item j). The dual variables are
listed on the right of their corresponding primal constraint in EG. We construct the Lagrangian

L(x, β, p) =
∑
i

Bi log ui +
∑
i

βi(〈vi, xi〉 − ui) +
∑
j

pj(1−
∑
i

xij)

The standard Lagrangian dual is then

min
p≥0,β≥0

max
x≥0

L(x, β, p) (2)

Now, we simplify the inner max:

max
x≥0

L(x, β, p) =
∑
j

pj +
∑
i

[
max
ui

(Bi log ui − βiui) + max
xi≥0
〈βivi − p, xi〉

]

=
∑
j

pj +
∑
i

[
max
ui

(Bi log ui − βiui) + δ [βivi ≤ p]
]

=
∑
j

pj +
∑
i

[
Bi max

ui

(
log ui −

βi
Bi
ui

)
+ δ [βivi ≤ p]

]
=
∑
j

pj +
∑
i

[Bi (−1− log βi + logBi) + δ [βivi ≤ p]]

The first equality is by rearranging terms. The second equality is by noting that the max over
xi ≥ 0 is positive infinity if βivij > pj for any j. The third equality is by rearranging Bi. The
fourth equality is by (1).

2



Thus we get that the dual (2) is equal to

min
p≥0,β≥0

∑
j

pj −
∑
i

Bi log(βi) +
∑
i

(logBi −Bi)

pj ≥ vijβi, ∀i, j
(3)

Finally we may drop the terms
∑

i (logBi −Bi) since they are constant, which finally yields the
standard dual of EG:

min
p≥0,β≥0

∑
j

pj −
∑
i

Bi log(βi)

pj ≥ vijβi, ∀i, j
(4)

4.1 Shmyrev’s Convex Program

Now we introduce a change of variables to (4), by letting qj = log pj and γi = − log βi. Plugging
these definitions into (4) we get

min
q,γ

∑
j

eqj +
∑
i

Biγi

qj + γi ≥ log vij , ∀i, j
(5)

Now we introduce Lagrangian variables bij for the constraint in (5) to get the following dual:

max
b≥0

min
q,γ

∑
j

eqj +
∑
i

Biγi +
∑
ij

bij [log vij − qj − γi]

= max
b≥0

∑
ij

bij log vij +
∑
j

min
qj

[
eqj −

∑
i

bijqj

]
+
∑
i

min
γi

Bi −∑
j

bij


Now first-order optimality on γi shows Bi =

∑
j bij and first-order optimality on qj shows eqj =∑

i bij . In a slight abuse of notation, we will introduce a dual variable pj = eqj . Putting this
together we get Shmyrev’s convex program:

max
b≥0

∑
i

bij log vij +
∑
j

(pj − pj log pj)

s.t.
∑
i

bij = pj , ∀j = 1, . . . ,m,∑
j

bij = Bi, ∀i = 1, . . . , n,

(6)

Since
∑

j pj =
∑

iBi, which is a constant, we may rewrite Shmyrev’s CP as

max
b≥0

∑
i

bij log vij −
∑
j

pj log pj

s.t.
∑
i

bij = pj , ∀j = 1, . . . ,m,∑
j

bij = Bi, ∀i = 1, . . . , n,

(Shmyrev)

3



5 First-Order Methods

We will now apply online mirror descent (OMD) to (Shmyrev). Remember that OMD makes
updates according to the rule:

xt+1 = argmin
x∈X

〈η∇ft(x), x〉+D(x‖xt).

where η > 0 is the stepsize and D(x‖xt) is the Bregman divergence between x and xt.
In order to instantiate OMD, we first rewrite (Shmyrev) in terms of bij only (letting pj(b) =∑
i bij) to get the objective function

f(b) = −
∑
ij

bij log vij +
∑
j

pj(b) log pj(b) = −
∑
ij

bij log(vij/pj(b)).

The feasible set is

X =

b ∈ Rn×m+ |
∑
j

bij = Bi,∀i

 .

Finally, we use the distance function d(b) =
∑

ij bij log bij which givesD(b‖a) =
∑

ij bij log(bij/aij)

At each time t, we simply see the loss f(bt). The gradient is ∇ijf(b) = 1 − log(vij/pj(b)).
Similar to when using the negative entropy on the simplex, the OMD update becomes (setting
η = 1):

bt+1
ij ∝ b

t
ij exp(−1 + log(vij/pj(b)))

∝ btij (vij/pj(b))

=
1

Z
btij (vij/pj(b))

where Z is a normalization constant such that
∑

j b
t+1
ij = Bi.

Amazingly, OMD on (Shmyrev) using a stepsize of 1 becomes the following very natural algo-
rithm:

• At each time t, each buyer i submits a bid vector bti (the current OMD recommendation)

• Given the bids, a price ptj =
∑

i b
t
ij is computed for each item

• Each buyer is given xtij =
btij
ptj

of each item

• Each buyer submits their next bid on item j proportional to the utility they received from
item j in round t:

bt+1
ij = Bi

xtijvij∑
j′ x

t
ij′vij′

It remains to discuss the fact that we set η = 1. In past lecture notes we saw that the uniform
average of OMD iterates converges to zero average regret at a rate of O(1/

√
T ), when using a

stepsize proportional to the inverse of the largest observed dual norm of gradients. However, our
objective f does not admit such a bound: the gradient for i, j goes to infinity as pj(b) tends to zero.
Thus based on our existing framework for OMD we are not even guaranteed a bound on regret.

However, it turns out that one can show the following “1-Lipschitz” condition relative to D:

4



Lemma 1. For all a, b ∈ S,

f(b) ≤ f(a) + 〈∇f(a), b− a〉+D(b‖a), ∀b, a ∈ X.

This inequality is a sort of generalized Lipschitz condition where we replace the `2 norm ‖a −
b‖22 that is typically used with our Bregman divergence D (this is analogous to how OMD itself
generalized projected gradient descent by changing the distance function).

To show this inequality, we will need the fact that the Bregman divergence D(b‖a) is convex
in both arguments for b, a ∈ Rn×m++ . To see that convexity holds, one can expand D(b‖a) =∑

ij bij log(bij/aij) and note that taking a sum preserves convexity. At that point, we only need to
check convexity of the function h(t, x) = t log(t/x) = −t log(x/t), which is simply the perspective
of − log(x) with respect to t. Taking perspectives is known to preserve convexity, and the negative
log is of course convex.

Proof. The proof of the inequality can be split into two parts. First, it can be observed that the
difference between f(b) and its linearization at a is the Bregman divergence D(p(b)‖p(a)):

f(b)− f(a)− 〈∇f(a), b− a〉

=−
∑
ij

bij log(vij/pj(b)) +
∑
ij

aij log(vij/pj(a))−
∑
ij

(1− log(vij/pj(a))) (bij − aij)

=−
∑
ij

bij log(vij/pj(b)) +
∑
ij

bij log(vij/pj(a))−
∑
ij

(bij − aij)

=
∑
ij

bij log(pj(b)/pj(a))−
∑
ij

(bij − aij)

=
∑
ij

bij log(pj(b)/pj(a)) ; since ‖a‖1 = ‖b‖1 =
∑
i

Bi

=
∑
j

pj(b) log(pj(b)/pj(a)) ; since pj(b) =
∑
i

bij

=D(p(b)‖p(a))

Secondly, we can bound D(p(b)‖p(a)) as follows (where h(t, x) = t log(t/x))

D(p(b)‖p(a)) =n
∑
j

1

n
h(pj(b), pj(a))

=n
∑
j

h

(
1

n
pj(b),

1

n
pj(a)

)
≤n
∑
j

1

n

∑
i

h (bij , aij)

=D(b‖a)

Putting together the two bounds we get Lemma 1.

Using the Lipschitz-like condition on f , one can show a stronger statement when running OMD
on a static objective f (which means that it is the same as running normal mirror descent):

5



Theorem 1. The OMD iterates with η = 1 converge at the rate:

f(bt)− f(b∗) ≤ log nm

t
.

This holds for any convex and differentiable f and D satisfying 1

Note two very nice properties here: the convergence rate is improved by a factor of
√
t, and the

iterates themselves converge, with no need for averaging. We won’t prove the above theorem here,
but it holds for any convex minimization problem that satisfies the relative Lipschitz condition in
Lemma 1.

6 Abstraction Methods

So far we have described a scalable first-order method for computing market equilibrium. Still,
this algorithms makes a number of assumptions that may not hold in practice. First, the size of
an iterate bt is nm; if both are on the order of 100,000 then writing down an iterate using 64-bit
floats requires about 80 GB of memory. For an application such as an Internet advertising market
we might expect n, and especially m, to be even larger than that. Thus we may need to find a
way to abstract that market down to some manageable size where we can at least hope to write
down iterates. Secondly, in practice we may not have access to all vij . Instead, we may only have
samples from vij , and we need to somehow infer the remaining valuations.

We now move to considering abstraction methods, which will allow us to deal with both of the
above issues.

For the purposes of abstraction, it will be useful to think of the set of valuations vij as a matrix
V , where the i’th row corresponds to the valuation vector of buyer i. We will be interested in what
happens if we compute a market equilibrium using some valuation matrix Ṽ 6= V , where Ṽ would
typically be obtained from some abstraction method. Can we say anything about how “close” to
market equilibrium we are in terms of the original V , for example if ‖Ṽ − ‖F is small?

We first describe two reasons that we might compute a market equilibrium for Ṽ rather than
V :

1. Low-rank markets: When there are missing valuations, we need to somehow impute the
missing values. Of course, if there is no relationship between the entries of V that we observed,
and those that are missing, then we have no hope of recovering V . However, in practice this
is typically not the case. In practice, the valuations are often assumed to (approximately)
belong to some low-dimensional space. A popular model is to assume that the valuations
are low rank, meaning that every buyer i has some d-dimensional vector φi, every good j
has some d-dimensional vector ψj , and the valuation of buyer i for good j is ṽij = 〈φi, ψj〉.
One may interpret this model as every item having some associated set of d features, with ψj
describing the value for each feature, and φi describes the value that i places on each feature.
In a low-rank model d is expected to be much smaller than min(n,m), meaning that V is far
from full rank. If the real valuations are approximately rank d (meaning that the remaining
spectrum of V is very small), then Ṽ will be close to V .

This model can also be motivated via the singular-value decomposition (SVD). Assume that
we wish to solve the following problem:

min
Ṽ

∑
ij

(vij − ṽij)2 = ‖V − Ṽ ‖2F

s.t. rank(Ṽ ) ≤ d

6



The optimal solution to this problem can be found easily via the SVD: Letting σ1, . . . , σd be
the first d singular values of V , and ū1, . . . , ūd the first left singular vectors, and v̄1, . . . , v̄d
the first right singular vectors, the optimal solution is

Ṽ =

d∑
k=1

σkūkv̄
T
k .

If the remaining singular values σk+1, . . . are small relative to the first k singular values, then
this model captures most of the valuation structure.

In practice we don’t know V , and so we can’t solve this mathematical program to get Ṽ .
Instead, we search for a low-rank model that minimizes some loss on the observed entries,
e.g.

∑
ij∈Ω(vij − 〈φi, ψj〉)2 (in practice this objective is typically also regularized by the

Frobenius norm of the low-rank matrices). Under the assumption that V is generated from
a true low-rank model via some simple distribution, it is possible to recover the original
matrix with only samples of entries by minimizing the loss on observed entries. In practice
this approach is also known to perform extremely well, and it is used extensively at major
Internet companies (the hypothesis here would be that in practice the data is approximately
low rank, so we don’t lose much accuracy from a rank-d model).

2. Representative Markets: We may wish to try to generate a smaller set of representative buyers,
where each original buyer i maps to some particular representative buyer r(i). Similarly, we
may wish to generate representative goods that correspond to many non-identical but similar
goods from the original market. In practice these representative buyers and goods would
typically be generated via clustering techniques. In this case, our approximate valuation
matrix Ṽ has as row i the valuation vector of the representative buyer r(i). This means that
all i, i′ such that r(i) = r(i′) have the same valuation vector in Ṽ , and thus they can be
treated as a single buyer for equilibrium-computation purposes. The same grouping can also
be applied to the goods. If the number of buyers and goods is reduced by a factor of 10,
then the resulting mathematical program is reduced by a factor of 102, since we have n×m
variables.

6.1 Measuring Solution Quality

We now analyze what happens when we compute a market equilibrium under Ṽ rather than V .
Throughout this section we will let (x̃, p̃) be a market equilibrium for Ṽ . We will use the error
matrix ∆V = V − Ṽ to quantify the solution quality, and we will measure the size of ∆V using the
`1 − `∞ matrix norm:

‖∆V ‖1,∞ = max
i
‖∆vi‖1.

We will also use the norm of the error vector for an individual buyer ‖∆vi‖1 = ‖vi − ṽi‖1.
A very useful property is that under linear utilities, the change in utility when going from vi to

ṽi is linear in ∆vi.

Proposition 1. If 〈ṽi, xi〉+ ε ≥ 〈ṽi, x′i〉 then 〈vi, xi〉+ ε+ ‖∆vi‖1 ≥ 〈vi, x′i〉
Proof. We have

〈ṽi, xi〉+ ε ≥ 〈ṽi, x′i〉
⇔ 〈vi −∆vi, xi〉+ ε ≥ 〈vi + ∆vi, x

′
i〉

⇔ 〈vi, xi〉+ 〈∆vi, x′i − xi〉+ ε ≥ 〈vi, x′i〉

7



Now the proposition follows by 〈∆vi, x′i − xi〉 ≤ ‖∆vi‖1.

This proposition can be used to immediately derive bounds on envy, proportionality, and regret
(how far each buyer is from achieving the utility of their demand bundle). For example, we know
that under Ṽ , each buyer i has no envy towards any other buyer k: 〈ṽi, x̃i〉 ≥ 〈ṽi, x̃k〉. By Proposi-
tion 1 each buyer i has envy at most ‖∆vi‖1 under V when using (x̃, p̃). All envies are thus bounded
by ‖∆V ‖1,∞. Regret and proportionality is bounded similarly using guaranteed inequalities under
Ṽ .

Market equilibrium also guarantees Pareto optimality. Can we give any meaningful guarantees
on how much social welfare improves under Pareto-improving allocati8ons for Ṽ ? Unfortunately
the answer to that is no, as the following example of real and abstracted matrices shows:

V =

[
1 ε ε
0 1 ε

]
, Ṽ =

[
1 ε 0
0 1 ε

]
.

If we set B1 = B2 = 1, then for supply-aware market equilibrium, we end up with competition only
on item 2, and we get prices p̃ = (0, 2, 0) and allocation x̃1 = (1, 0.5, 0), x̃2 = (0, 0.5, 1). Under V
this is a terrible allocation, and we can Pareto improve by using x1 = (1, 0, 0.5), x2 = (0, 1, 0.5),
which increases overall social welfare by 1

2 − ε, in spite of ‖∆V ‖1 = ε.
On the other hand, we can show that under any Pareto-improving allocation, some buyer i

improves by at most ‖∆V ‖1,∞1. To see this, note that for any Pareto improving allocation x,
under Ṽ there existed at least one buyer i such that 〈ṽi, x̃i − xi〉 ≥ 0, and so this buyer must
improve by at most ‖∆vi‖1 under V .

7 Historical Notes

The Shmyrev CP was given by Shmyrev [10]. The observation that the Shmyrev CP is related to
EG via duality and change of variables was by Cole et al. [5]. The original proportional response
dynamics were given by Wu and Zhang [13], and was shown to be effective for BitTorrent sharing
dynamics by Levin et al. [8]. The relationship of PR dynamics to Shmyrev’s CP and mirror
descent were given by Birnbaum et al. [1]. For rules on convexity-preserving operations, see Boyd
and Vandenberghe [2].

There is a long history of algorithms for computing market equilibrium in various Fisher-market
models. In this lecture note we focused on a particular method that is, to the best of our knowledge,
one of the fastest simple and scalable first-order methods for computing a market equilibrium.

The material on abstracting large market equilibrium problems is from Kroer et al. [7].
A brief introduction to low-rank models can be found in Udell [11]. Udell et al. [12] gives a

more through exposition and describes more general model types. There’s also a fascinating theory
of low-rank models, where a number of cool results are known: there’s a class of nuclear-norm-
regularized convex optimization problems that can recover the original matrix with only a small
number of entry samples [3, 9]. One might think that this would then be the preferred method
in practice, but surprisingly non-convex models are often preferred instead. These non-convex
methods also have interesting guarantees on statistical recovery under certain assumptions. An
overview of non-convex methods is given in Chi et al. [4].

Low-rank market equilibrium models were also studied in Kroer and Peysakhovich [6], where
it is shown that large low-rank markets enjoy a number of properties not satisfied by small-scale
markets.

8



References

[1] Benjamin Birnbaum, Nikhil R Devanur, and Lin Xiao. Distributed algorithms via gradient
descent for fisher markets. In Proceedings of the 12th ACM conference on Electronic commerce,
pages 127–136. ACM, 2011.

[2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[3] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717, 2009.

[4] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix
factorization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

[5] Richard Cole, Nikhil R Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani,
and Sadra Yazdanbod. Convex program duality, fisher markets, and Nash social welfare. In
18th ACM Conference on Economics and Computation, EC 2017. Association for Computing
Machinery, Inc, 2017.

[6] Christian Kroer and Alexander Peysakhovich. Scalable fair division for’at most one’preferences.
arXiv preprint arXiv:1909.10925, 2019.

[7] Christian Kroer, Alexander Peysakhovich, Eric Sodomka, and Nicolas E Stier-Moses. Com-
puting large market equilibria using abstractions. In Proceedings of the 2019 ACM Conference
on Economics and Computation, pages 745–746, 2019.

[8] Dave Levin, Katrina LaCurts, Neil Spring, and Bobby Bhattacharjee. Bittorrent is an auction:
analyzing and improving bittorrent’s incentives. In Proceedings of the ACM SIGCOMM 2008
conference on Data communication, pages 243–254, 2008.

[9] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning
Research, 12(Dec):3413–3430, 2011.

[10] Vadim I Shmyrev. An algorithm for finding equilibrium in the linear exchange model with
fixed budgets. Journal of Applied and Industrial Mathematics, 3(4):505, 2009.

[11] Madeleine Udell. Big data is low rank. SIAG/OPT Views and News, 2019. URL http:

//wiki.siam.org/siag-op/images/siag-op/b/bd/ViewsAndNews-27-1.pdf.

[12] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Generalized low rank
models. Foundations and Trends R© in Machine Learning, 9(1):1–118, 2016.

[13] Fang Wu and Li Zhang. Proportional response dynamics leads to market equilibrium. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 354–
363, 2007.

9

http://wiki.siam.org/siag-op/images/siag-op/b/bd/ViewsAndNews-27-1.pdf
http://wiki.siam.org/siag-op/images/siag-op/b/bd/ViewsAndNews-27-1.pdf

	Introduction
	Setup Recap
	Interlude on Convex Conjugates
	Duals of the Eisenberg-Gale Convex Program
	Shmyrev's Convex Program

	First-Order Methods
	Abstraction Methods
	Measuring Solution Quality

	Historical Notes

