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1 Introduction

In this lecture note we study the fair division setting where items are indivisible. This setting
presents a number of challenges that were not present in the divisible case.

It is obviously an important setting in practice. For example, the website http://www.spliddit.
org/ allows users to fairly split estates, financial assets, toys, or other goods. In order to design
suitable mechanisms for fairly dividing discrete goods, we will need to reevaluate our fairness con-
cepts.

2 Setup

We have a set of m indivisible goods that we wish to divide among n agents. Without loss of
generality we assume that each good has supply 1. We will denote the bundle of goods given to
agent i as xi, where xij is the amount of good j that is allocated to buyer i. The set of feasible
allocations is then {x|

∑
i xij ≤ 1, xij ∈ {0, 1}}

Unless otherwise specified, each agent is assumed to have a linear utility function ui(xi) = 〈vi, xi〉
denoting how much they like the bundle xi.

3 Fair Division

In the case of indivisible items, several of our fairness properties become much harder to achieve.
We will assume that we are require to construct a Pareto-efficient allocation.

Proportional fairness doesn’t even make sense anymore: it rested on the idea of assigning
each agent their fractional share 1

n of each item. There is however, a suitable generalization of
proportionality that does make sense for the indivisible case: the maximin share (MMS) guarantee:
For agent i, their MMS is the value they would get if they get to divide the items up into n bundles,
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and are required to take the worst bundle. Formally:

max
x≥0

min
j
ui(xj)

s.t.
∑
i

xij ≤ 1, ∀j

xij ∈ {0, 1}, ∀i, j

We say that an allocation x is an MMS allocation if every agent i receives utility ui(xi) that is
at least as high as their MMS guarantee. In the case of 2 agents, an MMS allocation always exists.
As an exercise, you might try to come up with an algorithm for finding such an allocation1

In the case of 3 or more agents, such a solution may not exist. The counterexample is very
involved, so we won’t cover it here.

Theorem 1. For n ≥ 3 agents, there exist additive valuations for which an MMS allocation does
not exist. However, an allocation such that each agent receives at least 3

4 of their MMS guarantee
always exists.

The original spliddit algorithm for dividing goods worked as follows: first, compute the α ∈ [0, 1]
such that every agent can be guaranteed an α fraction of their MMS guaranteee (this always ends
up being α = 1 in practice). Then, subject to the constraints ui(xi) ≥ αMMSi, a social welfare-
maximizing allocation was computed. However, this can lead to some weird results.

Example 1. Three agents each have valuation 1 for 5 items. In that case, the MMS guarantee is
1 for each agent. But now the social welfare-maximizing solution can allocate three items to agent
1, and 1 item each to agents 2 and 3. Obviously a more fair solution would be to allocate 2 items
to 2 agents, 1 item to the last agent.

One observation we can make about the 3/1/1 solution versus the 2/2/1 solution is that envy
is strictly higher in the 3/1/1/ solution.

With the above motivation, let us consider envy in the discrete setting. It is easy to see that we
generally won’t be able to get envy-free solutions if we are required to assign all items. Consider
2 agents splitting an inheritance: a house worth $500k, a car worth $10k, and a jewelry set worth
$5k. Since we have to give the house to a single agent, the other agent is guaranteed to have envy.
Thus we will need a relaxed notion of envy:

Definition 1. An allocation x is envy-free up to one good (EF1) if for every pair of agents i, k,
there exists an item j such that xkj = 1 and ui(xi) ≥ ui(xk − ek), where ek is the k’th basis vector.

Intuitively, this definition says that for any pair of agents i, k such that i envies k, that envy
can be removed by removing a single item from the bundle of k. Note that requiring EF1 would
have forced us to use the 2/2/1 allocation in Example 1.

For linear utilities, an EF1 allocation is easily found (if we disregard Pareto optimality). As
an exercise, come up with an algorithm for computing an EF1 allocation for linear valuations2 In
fact, EF1 allocations can be computed in polynomial time for any monotone set of utility functions
(meaning that if xi ≥ x′i then ui(xi) ≥ ui(x′i)).

1Solution: compute one of the solutions solutions to agent 1’s MMS computation problem. Then let agent 2
choose their favorite bundle, and give the other bundle to agent 1. Agent 1 clearly receives their MMS guarantee, or
better. Agent 2 also does: their MMS guarantee is at most 1

2
‖v2‖1, and here they receive utility of at least 1

2
‖v2‖1.

2This is achieved by the round-robin algorithm: simply have agents take turns picking their favorite item. It is
easy to see that EF1 is an invariant of the partial allocations resulting from this process.
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However, ideally we would like to come up with an algorithm that gives us EF1 as well as
Pareto efficiency. To achieve this, we will consider the product of utilities, which we saw previously
in Eisenberg-Gale. This product is also called the Nash welfare of an allocation:

NW (x) =
∏
i

ui(xi)

The max Nash welfare (MNW) solution picks an allocation that maximizes NW (x):

max
x

∏
i

ui(xi)

s.t.
∑
i

xij ≤ 1,∀j

xij ∈ {0, 1}, ∀i, j

Note that here we have to worry about the degenerate case where NW (x) = 0 for all x, meaning
that it is impossible to give strictly positive utility to all agents. We will assume that there exists
x such that NW (x) > 0. If this does not hold, typically one seeks a solution that maximizes the
number of agents with strictly positive utility, and then the largest MNW achievable among subsets
of that size is chosen.

The MNW solution turns out to achieve both Pareto optimality (obviously, since otherwise it
would not solve the MNW optimization problem), and EF1:

Theorem 2. The MNW solution for linear utilities is Pareto optimal and EF1.

Proof. Let x be the MNW solution. Say for contradiction that agent i envies agent k by more
than one good. Let j be the item allocated to agent k that minimizes the ratio

vkj
vij

. Let x′ be

the same allocation as x, except that x′ij = 1, x′kj = 0. The proof is concluded by showing that
NW (x′) > NW (x), which contradicts optimality of x for the MNW problem.

Using the linearity of utilities we have ui(x
′
i) = ui(xi) + vij and uk(x′k) = uk(xk) − vkj . Every

other utility stays the same. Now we have

NW (x′)

NW (x)
> 1

⇔
[ui(xi) + vij ] · [uk(xk)− vkj ]

ui(xi)uk(xk)
> 1

⇔
[
1 +

vij
ui(xi)

]
·
[
1−

vkj
uk(xk)

]
> 1

⇔
vkj
vij

[ui(xi) + vij ] < uk(xk) (1)

By how we choose j we have

vkj
vij
≤
∑

j′ vkj′∑
j′ vij′

≤ uk(xk)

ui(xk)
,

and by the envy property we have

ui(xi) + vij < ui(xk).

Now we can multiply together the last two inequalities to get (1).
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The MNW solution also turns out to give a guarantee on MNW, but not a very strong one:
every agent is guaranteed to get 2

1+
√
4n−3 of their MMS guarantee, and this bound is tight. Luckily,

in practice the MNW solution seems to fare much better. On Spliddit data, the following ratios are
achieved. In the table below are shown the MMS approximation ratios across 1281 “divide goods”
instances submitted to the Spliddit website for fairly allocating goods

MMS approximation ratio intervals [0.75, 0.8) [0.8, 0.9) [0.9, 1) 1

% of instances in interval 0.16% 0.7% 3.51% 95.63%
Over 95% of the instances have every player receive their full MMS guarantee.

4 Computing Discrete Max Nash Welfare

4.1 Complexity

The problem of maximizing Nash welfare is generally not easy. In fact, the problem turns out to
be not only NP-hard, but NP-hard to approximate within a factor µ ≈ 1.00008 (the best currently-
known approximation factor is 1.45, so the gap between 1.00008 and 1.45 is open).

The reduction is based the vertex-cover problem on 3-regular graphs, which is NP-hard to
approximate within factor ≈ 1.01. A 3-regular graph is a graph where each vertex has degree 3.

The proof is not particularly illuminating, so we will skip it here. However, let’s see a quick
way to prove a simpler statement: that the problem is NP-hard even for 2 players with identical
linear valuations. Consider the following

Definition 2. Partition problem: you are given a multiset of integers S = {s1, . . . , sm} (poten-
tially with duplicates), and your task is to figure out if there is a way to partition S into two sets
S1, S2 such that

∑
i∈S1

si =
∑

i∈S2
s2.

We may now construct an MNW instance as follows: we create two agents and m items. Each
agent has value sj for item j. Now by the AM-GM inequality (2d case:

√
xy ≤ x+y

2 , with equality
iff x = y) there exists a correct partitioning if and only if the MNW allocation has value (12

∑
j sj)

2.
This result can be extended to show strong NP-hardness by considering the k-equal-sum-

subset problem: given a multiset S of x1, . . . , xn positive integers, are there k nonempty disjoint
subsets S1, . . . , Sk ⊂ S such that sum(S1) = . . . = sum(Sk). The exact same reduction as before
works, but with k agents rather than 2.

4.2 Algorithms

Given these computational complexity problems, how should we compute an MNW allocation in
practice?

We present two approaches here. First, we can take the log of the objective, to get a concave
function. After taking logs, we get the following mixed-integer exponential-cone program:

max
∑
i

log ui

s.t. ui ≤ 〈vi, xi〉, ∀i = 1, . . . , n∑
i

xij ≤ 1, ∀j = 1, . . . ,m

xij ∈ {0, 1}, ∀i, j

(2)

This is simply the discrete version of the Eisenberg-Gale convex program. One approach is to solve
this problem directly, e.g. using Mosek.

4



Alternatively, we can impose some additional structure on the valuation space: if we assume
that all valuations are integer-valued, then we know that ui(xi) will take on some integer value in
the range 0 to ‖vi‖1. In that case, we can add a variable wi for each agent i, and use either (1)
the linearization of the log at each integer value, or (2) the linear function from the line segment
(log k, k), (log(k+ 1), k+ 1), as upper bounds on wi. This gives 1

2‖vi‖1 constraints for each i using
the line segment approach (the linearization uses twice as many constraints), but ensures that
wi is equal to log〈vi, xi〉 for all integer-valued 〈vi, xi〉. Using the line segment approach gives the
following mixed-integer linear program (MILP):

max
∑
i

wi

s.t. wi ≤ log k + [log(k + 1)− log k]× (〈vi, xi〉 − k), ∀i = 1, . . . , n∑
i

xij ≤ 1, ∀j = 1, 3, . . . ,m

xij ∈ {0, 1}, ∀i, j

(3)

These two mixed-integer programs both have some drawbacks: For the first mixed-integer
exponential-cone program, we must resort to much less mature technology than for mixed-integer
linear programs. On the other hand, the discrete EG program is reasonably compact: the program
is roughly the size of a solution. For the MILP, the good news is that MILP technology is quite
mature, and so we might expect this to solve quickly. On the other hand, adding n×‖vi‖1 additional
constraints can be quite a lot, and could lead to slow LP solves as part of the branch-and-bound
procedure.

Figure 1 shows the performance of the two approaches.
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Figure 1: Plot showing the runtime of discrete Eisenberg-Gale and the MILP approach.

5 Market Equilibrium

We saw previously that in the divisible case competitive equilibrium from equal incomes (CEEI) is
a very good method for achieving a fair allocation. Motivated by this, we may ask whether CEEI
could also be used to achieve fair outcomes for the indivisible case? However, even for the case of
linear utilities, we quickly hit a hurdle: since we cannot achieve envy-free solutions, there is no way
that we can guarantee the existence of a market equilibrium when all buyers have the same budget
(why?).
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As mentioned in a prior note, a market equilibrium is a set of prices p ∈ Rm
+ for each of the m

goods, as well as an allocation x ∈ {0, 1}n×m of goods to buyers such that everybody is assigned
an optimal allocation given the prices and their budget. Formally, the demand set of an buyer i
with budget Bi is

D(p) = argmaxxi≥0ui(xi) s.t. 〈p, xi〉 ≤ Bi

A market equilibrium is an allocation-price pair (x, p) s.t. xi ∈ D(p) for all buyers i, and
∑

i xij = 1.

5.1 Approximate CEEI

Since a market equilibrium is not guaranteed to exist for equal budgets (or for many other budget
allocations), we will instead look at approximate CEEI (A-CEEI). In A-CEEI the idea is to relax
two parts of CEEI: (1) we give agents approximately equal, rather than exactly equal, budgets,
and (2) we only clear the market approximately.

Let’s see how this works with an example. Consider an example where two agents are trying to
divide four goods: two diamonds (one large (LD), one small (SD)), and two rocks (one pretty (PR),
one ugly (UR)). Say the agents both have utilities such that they can take at most two items, and
they prefer bundles in the order

(LD,SD) > (LD,PR) > (LD,UR) > (LD) > (SD,PR) > (SD,UR) > (PR,UR) > (PR) > (UR).

Clearly if budgets are equal we cannot hope to price these items in a way that clears the market,
since both agents will always want the bundle with the large diamond if they can afford it. But if
we instead give agent 1 a budget of 1.2 and agent 2 a budget of 1, then we can set the prices as
follows:

LD SD PR UR
1.10 0.8 0.2 0.1

Now agent 1 wishes to buy (LD,UR) for a total price of 1.2, and agent 2 wishes to buy (SD,PR)
for a total price of 1. As long as we decide the budget perturbations in a randomized way this is in
some sense fair in expectation, and furthermore we might hope that the budget perturbations are
small enough that for instances with more than four items, things look even fairer. Note that the
allocation we found satisfies both EF1 and the MMS guarantee. The example also achieves Pareto
optimality, but we will in general only guarantee approximate Pareto optimality for A-CEEI for
more general valuations.

We will describe the problem in the context of matching students to seats in courses. This
setup is used in the Course Match software, which is used for matching students at Wharton and
several other schools. There is a set of m courses, and each course j has some capacity sj . There
is a set of n students. Each student has a set Ψi ⊆ 2m of feasible subsets of courses that they may
be allocated, with each bundle containing at most k ≤ m courses (note that this assumes that each
student can only consume one unit of a good, even if sj > 1; this is of course reasonable in course
allocation, but not for all applications). The set Ψi encodes both scheduling constraints such as
courses meeting at the same time, as well as constraints specific to the student such as whether they
satisfy the prerequisites. The preferences of student i are assumed to be given as a complete and
transitive ordinal preference ordering <i over Ψi. Completeness simply means that for all schedules
x, x′ ∈ Ψi, x <i x

′, x′ <i x, or both. Transitivity means that if x <i x
′ and x′ <i x

′′ then x <i x
′′.

Given a set of prices p for each course, a vector x∗i is in the demand set for student i if

x∗i ∈ argmax<i
{xi ∈ Ψi : 〈xi, p〉 ≤ Bi}.
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In the actual Course Match implementation, <i is represented numerically by an utility function
for each student, but the A-CEEI theory works for the more general case of ordinal preferences.

Since we have existence issues (these arise both from indivisibility as seen earlier, but also from
the very general preference orderings allowed), we resort to an approximation to CEEI:

Definition 3. An allocation x, prices p, and budgets B constitute an (α, β)-CEEI if:

1. xi ∈ argmax<{x′ ∈ Ψi : 〈p, x′〉 ≤ Bi} for all i

2. ‖z‖2 ≤ α, where z ∈ Rm
+ is defined as zj =

∑
i xij− sj if pj > 0, and zj = max(

∑
i xij− sj , 0)

if pj = 0

3. Bi ∈ [1, 1 + β] for all i

The first condition in (α, β)-CEEI simply says that each student i buys an item in their demand
set. The second condition says that supply constraints are approximately satisfied. The third
constraint says that all budgets are almost the same, up to a difference of β.

The main theorem regarding (α, β)-CEEI is that they are guaranteed to exist:

Theorem 3. Let σ = min(2k,m). For any β > 0, there exists a (
√
σm/2, β)-CEEI. Moreover,

given budgets B ∈ [1, 1 + β]n and any ε > 0, there exists a (
√
σm/2, β)-CEEI using budgets B∗

such that ‖B∗ −B‖∞ ≤ ε.

One major concern with this result is that we are not quite guaranteed a feasible solution. In
general the allocation may oversubscribe some courses, though the oversubsciption vector z has
bounded `2 norm. In practice, the bound is relatively modest: First, the bound

√
σm/2 does not

grow with the number of agents or number of course seats. Second, in practice students take at
most a modest number of courses per semester among a reasonably-small number of courses offered
(an example given in the literature is that students take k = 5 courses out of 50 courses total at
Harvard’s MBA program), thus yielding a bound of roughly 11. Technically a single course could
be oversubscribed by 11 students, but in practice we expect this to be smoothed out reasonably
across many courses.

The proof of the existence theorem is rather involved and relies on smoothing out the mar-
ket in order to invoke fixed-point theorems. Here we give some intuition for the role that each
approximation plays.

As in other discontinuous settings, the main difficult for existence without approximation is the
discontinuity of student demands with respect to price. However, in the course match setting,

√
σ

is an upper bound on the discontinuity of the demand of any single agent. To see this, note that
a demand xi has at most k entries set to 1, and so a student can at most drop all courses from xi
and switch to k new courses under their new demand x′i. At the same time, there’s only m courses
total, so the change is bounded by min(2k,m), and thus ‖xi − x′i‖2 ≤

√
σ.

The second discontinuity issue is to avoid large discontinuous aggregate changes in demand
across the students. When budgets are the same, as in standard CEEI, the demand discontinuity
across students may occur at the same point in the space of prices. Thus, if this happens, aggregate
discontinuity may be on the order of nσ. With distinct budgets, it becomes possible to change a
single student’s demand without changing those of other students. For each bundle x, we may think
of the hyperplane H(i, x) = {p : 〈p, x〉 ≤ Bi} which denotes the boundary between two halfspaces
in the price space: those where student i can afford x, and those where i cannot afford x. By having
each budget distinct, one can show that in a generic sense, at most m hyperplanes can intersect at
any particular point in price space. This implies that aggregate demand changes by at most σm.

The remainder of the proof is concerned with smoothing out the aggregate demands so that a
fixed-point existence theorem can be applied to show existence.
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5.2 Fairness and Optimality Properties of A-CEEI

Since we are only approximately clearing the market, we do not get Pareto optimality. However, it
is possible to show that if we construct a modified market where s̃j = sj − zj , then we have Pareto
optimality in that market. Thus, any Pareto-improving allocation must utilize unused supply,
which can potentially be used to bound the inefficiency once more structure is imposed on utilities.

Crucially, (α, β)-CEEI does guarantee some fairness properties. If we select β ≤ 1
k−1 , then EF1

is guaranteed in any (α, β)-CEEI. Furthermore, there exists β small enough such that each student
is also guaranteed to receive their (n+ 1)-MMS share, which is their utility if they were forced to
partition the items into n+ 1 bundles and take the worst one.

5.3 Practical Course Match Concerns

In Course Match, the representation of <i is as follows: the set of feasible schedules Ψi is taken as
given. Then, student i ranks each course on a scale from 0 − 100, and is additionally allowed to
specify pairwise penalties or bonuses in −200, 200 for being assigned a given pair of courses.

5.4 Computing A-CEEI

In general computing an A-CEEIis PPAD complete. This is the same class of problem that general-
sum Nash equilibrium falls in. It is conjectured to require exponential time in the worst case, and
thus we cannot hope to have nice scalable algorithms like we had for the divisible case.

In practice, A-CEEI is computed using local search. A tabu search is used on the space of
prices. This works as follows:

1. A price vector is generated randomly

2. A set of “neighbors” are generated using two different generation approaches:

• “Price gradient:” all the demands under the current prices are added up, and the excess
demand vector is treated as a gradient. Then, 20 different stepsizes are tried along the
price gradient

• A single item has its price changed, and all other prices are kept the same. The new price
on the chosen item is set high enough to stop it from being oversubscribed, or low enough
to stop being underscribed. A neighbor is generated for each over or undersubscribed
item

3. The best neighbor (among the ones generating a previously-unseen allocation) is selected as
the next price vector, and the procedure repeats from step 2 (unless the last 5 iterations
yielded no improving prices, in which case the local search stops)

4. Finally, step 1 is repeated with a new random price vector. This repeats until a time limit is
reached

In practice this procedure generates an A-CEEI solution with significantly better α and β values
than the theory predicts, within roughly two days of computation. In the process, about 4.25 billion
MIPs are solved. After an A-CEEI has been generated, additional heuristics are implemented in
order to force the solution to not have oversubscription.
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6 Historical Notes

The maximin share was introduced by Budish [2]. The results on nonexistence of MMS allocation,
and an approximation guarantee of 2

3 were given by Kurokawa et al. [7]. The approximation
guarantee was improved to 3

4 by Ghodsi et al. [6]. The application of MNW to fair division was
proposed by Caragiannis et al. [4].

A really nice overview talk targeted at a technical audience is given by Ariel Procaccia here:
https://www.youtube.com/watch?v=7lUtS-l9ytI. Most of the material here is based on his
excellent presentations of these topics.

The 1.00008 inapproximability result was by Lee [8]. The 1.45-approximation algorithm was
given byBarman et al. [1]. Strong NP-hardness of k-equal-sum-subset is shown in Cieliebak et al.
[5].

The MILP using approximation to the log at each integer point was introduced by Caragiannis
et al. [4]. At the time, Mosek did not support exponential cones, and so they did not compare to
the direct solving of discrete Eisenberg-Gale. The results shown here are the first direct comparison
of the two, as far as I know.

A-CEEI was introduced by Budish [2], and an implementation of A-CEEI used at Wharton was
given by Budish et al. [3].

References

[1] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages
557–574, 2018.

[2] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[3] Eric Budish, Gérard P Cachon, Judd B Kessler, and Abraham Othman. Course match: A
large-scale implementation of approximate competitive equilibrium from equal incomes for com-
binatorial allocation. Operations Research, 65(2):314–336, 2016.

[4] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and
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