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1 Why Economics, AI and Optimization?

The course will examine three different areas of game theory and economics. Each area will have
real-life applications that have been deployed. So why AI and optimization? A common theme
underlying all the areas that we will study is that for each area, one or more of the real applications
are enabled by AI and optimization. In particular, we will repeatedly see that economic solution
concepts often have some underlying convex or mixed-integer formulation of the problem, that
allows us to compute solutions. Furthermore, most applications will require scaling at a level where
standard optimization methods are not enough. In those settings, AI methods such as abstraction
or machine learning are often used. For example, we may have a game that is way too large to even
fit in memory. In that case, we can generate some coarse-grained representation of the problem
using abstraction or machine learning. This coarse-grained representation is then typically what
we solve with optimization methods.

2 Nash Equilibrium

The first section of the course will be concerned with Nash equilibrium. Roughly speaking, a Nash
equilibrium of a game, is a set of strategies in steady state. What is meant by steady state here is
that each player is playing an optimal strategy, given what everybody else is doing. This is perhaps
best illustrated with an example. Below is the bimatrix payoffs of the game of rock-paper-scissors
(RPS).

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

In this representation, Player 1 chooses a row to play, and Player 2 chooses a column to play. Player
1 tries to maximize the first value at the resulting entry in the bimatrix, while Player 2 tries to
maximize the second value.

Here is an example of something that is not a Nash equilibrium: Player 1 always plays rock,
and Player 2 always plays scissors. In this case, Player 2 is not playing optimally given the strategy
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of Player 1, since they could improve their payoff from −1 to 1 by switching to deterministically
playing paper. In fact, this argument works for any pair of deterministic strategies, and so we see
that there is no Nash equilibrium consisting of deterministic strategies.

Instead, RPS is an example of a game where we need randomization in order to arrive at a
Nash equilibrium. The idea is that each player gets to choose a probability distribution over their
actions instead (e.g. a distribution over rows for Player 1). Now, the value that a given player
receives under a pair of mixed strategies is their expected payoff given the randomized strategies.
In RPS, it’s easy to see that the unique Nash equilibrium is for each player to play each action
with probability 1

3 . Given this distribution, there is no other action that either player can switch
to and improve their utility. This is what we call a (mixed-strategy) Nash equilibrium.

The famous results of John Nash from 1951 is that every game has a Nash equilibrium:

Theorem 1. Every bimatrix game has a Nash equilibrium.

The attentive reader may have noticed that our game has a further property: whenever one
player wins, the other loses. More generally, a bimatrix game is a zero-sum game if it can be
represented in the following form:

min
x∈∆n

max
y∈∆m

xTAy

where ∆n,∆m are the n and m-dimensional probability simplexes, respectively, and A contains the
payoff entries to the y-player from the bimatrix representation. This is called a bilinear saddle-
point problem. The key here is that we can now represent the game as a single matrix, where the
x-player wishes to minimize the bilinear term xTAy and the y-player wishes to maximize it. Zero-
sum matrix games are very special: they can be solved in polynomial time with a linear program
whose size is linear in the matrix size.

A more exciting application of zero-sum games is to use it to compute an optimal strategy for
two-player poker (AKA heads-up poker). In fact, as we will discuss later, this was the foundation
for many recent” “superhuman AI for poker” results [1, 14, 2, 4]. In order to model poker games
we will need a more expressive game class called extensive-form games (EFGs). These games are
played on trees, where players may sometimes have groups of nodes, called information sets, that
they cannot distinguish among. An example is shown in Figure 1.

EFGs can also be represented as a bilinear saddle-point problem:

min
x∈X

max
y∈Y

xTAy,

where X,Y are no longer probability simplexes, but more general convex polytopes that encode
the sequential decisions spaces of each player. This is called the sequence-form representation [18],
and we will cover that later. Like matrix games, zero-sum EFGs can be solved in polynomial time
with linear programming, and the LP has size linear in the game tree.

It turns out that in many practical scenarios, the LP for solving a zero-sum game ends up
being far too large to solve. This is especially true for EFGs, where the game tree can quickly
become extremely large if the game has almost any amount of depth. Instead, iterative methods
are used in practice. What is meant by iterative methods here is the class of algorithms that build
a sequence of strategies x0, x1, . . . , xT , y0, y1, . . . , yT where only a constant number of strategies is
kept in memory, and only oracle access to Ay and ATx is needed (this is different from writing
down A explicitly!). Typically the average strategies x̄T = 1

T

∑T
t=1 xt, ȳT = 1

T

∑T
t=1 yt converge

to a Nash equilibrium. The reason these methods are preferred is two-fold, first by never writing
down A explicitly we save a lot of memory (now we just need enough memory to store the much
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Figure 1: A poker game where P1 is dealt Ace or King. “r,” “f,” and “c” stands for raise, fold, and
check respectively. Leaf values denote P1 payoffs. The shaded area denotes an information set: P2
does not know which of these nodes they are at, and must thus use the same strategy in both.

smaller x, y strategy vectors), secondly they avoid the expensive matrix inversions involved in the
simplex algorithm and interior-point methods.

The algorithmic techniques we will learn in this section are largely centered around iterative
methods. First, we will do a quick introduction to online learning and online convex optimization.
We will learn about two classes of algorithms: ones that converge to an equilibrium at a rate
O(1/

√
T ). These roughly correspond to saddle-point variants of gradient-descent-like methods.

Then we will learn about methods that converge to the solution at a rate of O(1/T ). These
roughly correspond to saddle-point variants of accelerated gradient methods. Then we will also
look at the practical performance of these algorithms. Here we will see that the following quote is
very much true:

In theory, theory and practice are the same. In practice, they are not.

In particular, the preferred method in practice is the CFR+ algorithm [17] and later variations [3],
all of which have a theoretical convergence rate of O(1/

√
T ). In contrast, there are methods that

converge at a rate of O(1/T ) [11, 12, 13] in theory, but these methods are actually slower than
CFR+ for most real games!

Being able to compute an approximate Nash equilibrium with iterative methods is only one
part of how superhuman AIs were created for poker. In addition, abstraction and deep learning
methods were used to create a small enough game that can be solved with iterative methods. We
will also cover how these methods are used.

Killer applications of zero-sum games include poker (as we saw), other recreational two-player
games, and generative-adversarial networks (GANs). Other applications that are, as of yet, less
proven to be effective in practice are robust sequential decision making (the adversary represents
uncertainty), and security scenarios where we assume the world is adversarial.
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3 Stackelberg Equilibrium

The second section of the course will cover what’s called Stackelberg equilibrium. We will primarily
study Stackelberg equilibrium in the context of what is called security games [16].

Imagine the following scenario: we wish to protect rhinos in an African national park from
poaching. There are 20 different watering holes that the rhinos frequent. We have 5 teams of
guards that can patrol watering holes. How can we effectively combat poaching? If we come up
with a fixed patrol schedule then the poachers can observe us for a few days and learn our schedule
exactly. Afterwards they can strike at a waterhole that is guaranteed to be empty at some particular
time. Thus we need to design a schedule that is unpredictable, but which also accounts for which
watering holes are more frequented by rhinos (and are thus higher value), travel constraints, etc.

In the security games literature, the most popular solution concept for this kind of setting is
the Stackelberg equilibrium. In a Stackelberg equilibrium, we assume that we as the leader (e.g.
the park rangers) get to commit to our (possibly randomized) strategy first. Then, the follower
observes our strategy and best responds. This turns out to yield a different solution concept from
Nash equilibrium in the case of general-sum games.

However, if we want to help the park rangers design their schedules then we will need to
be able to compute Stackelberg equilibria of the resulting game model. Again, we will see that
optimization is one of the fundamental pillars of the field of security games research. A unique
feature of security games is that the strategy space of the leader is typically some combinatorial
polytope (e.g. a restriction on the transportation polytope), and the problem of computing a
Stackelberg equilibrium is intimately related to optimization over the underlying polytope of the
defender (see Xu [19] for some nice consequences of this observation). Because of this combinatorial
nature, security games often end up being much harder to solve than zero-sum Nash equilibrium.
Therefore, the focus of this section will be on combinatorial approaches to this problem, such
as mixed-integer programming, and decomposition. Another crucial aspect of security games is
having good models of the attacker. Thus we will also spend some time learning how one can
model adversaries using machine learning.

Killer applications of Stackelberg games are mainly in the realm of security. They have been
applied in infrastructure security (airports, coast guard, air marshals) [16], to protect wildlife [10],
and to combat fare evasion. A nascent literature is also emerging in cybersecurity. Outside of the
world of security Stackelberg games are also used to model things like first-mover advantage in the
business world.

4 Market Design

Finally, the third section of the course will be on market design. In market design we are typically
concerned with how to design the rules of the game, and how to do that in order to achieve “good”
outcomes.

For example, imagine that we are designing a mechanism for managing course enrollment. How
should we decide which students get to take which courses? What do we do with the fact that our
deep learning course has 100 seats and 500 people that want to take it? Overall, we would like the
system to somehow be efficient, but what does that mean? We would also like the system to be
fair, but it’s not entirely clear what that means either.

At a loss for ideas, we come up with the following solution: we will just have a sign-up system
where students can sign up until a course fills up. After that we put other students on a waitlist
that we clear on a first-in first-out basis as seats become available. Is this a good system? Well,
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let’s look at a simple example: we will have 2 students and 2 courses, each course having 1 seat.
Students are allowed to take at most one course. Let’s say that each student values the courses as
follows:

Course A Course B

Student 1 5 5
Student 2 2 8

Student 1 arrives first and signs up for course B. Then Student 2 arrives and signs up for A. The
total welfare of this assignment is 5 + 2 = 7. This does not seem to be an efficient use of resources:
we can improve our solution by swapping the courses, since Student 1 gets the same utility as
before, and Student 2 improves their utility. This is what’s called a Pareto-improving allocation
because each student is at least as well off as before, and at least one student is strictly better off.
One desiderata for efficiency is that no such improvement should be possible; an allocation with
this property is called Pareto efficient.

Let’s look at another example. Now we have 2 students and 4 courses, where each student takes
2 courses. Again courses have only 1 seat.

Course A Course B Course C Course D

Student 1 10 10 1 1
Student 2 10 10 1 1

Now say that Student 1 shows up first, and signs up for A and B. Then Student 2 shows up and
signs up for C and D. Call this assignment x1. Here we get that x1 is Pareto efficient, but it does
not seem fair. A fairer solution seems to be that each students get a course with value 10 and a
course with value 1, let x2 be such an allocation. One way to look at this improvement is through
the notion of envy : each student should like their own course schedule at least as well as that of
any other student. Under x1 Student 2 envies Student 1, whereas under x2 no student envies the
other. Fairness turns out to be a complicated idea, and we will see later that there are several
appealing notions that we may wish to strive for.

Instead of first-come-first-serve, we can use ideas from market design to get a better mechanism.
The solution that we will learn about turns out be somewhat peculiar: we give every student some
fixed budget of fake currency (aka funny money). Then, we treat the assignment problem as
a market problem under the assigned budgets, and ask for what is called a market equilibrium.
Briefly, a market equilibrium is a set of prices, one for each item, and an allocation of items to
buyers. The allocation must be such that every item is fully allocated, and every buyer is getting
an assignment that maximizes their utility given the prices and their budget. Given such a market
equilibrium, we then take the allocation from the equilibrium, throw away the prices (the money
was fake anyway!), and use that to perform our course allocation. This turns out to have a number
of attractive fairness and efficiency properties. This system is deployed at several business schools
such as Wharton (UPenn), Rotman (U Toronto), and Tuck (Dartmouth) [5, 6].

Of course, if we want to implement this protocol we need to be able to compute a market
equilibrium. This turns out to be a rich research area: in the case of what is called a Fisher
market, where each agent i has a linear utility function vi ∈ Rm

+ over the m items in the market
there is a neat convex program that results in a market equilibrium [9]:

max
x≥0

∑
i

Bi log(vi · xi)

s.t.
∑
i

xij ≤ 1, ∀j
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Here xij is how much buyer i is allocated of item j. Notice that we are simply maximizing the
budget-weighted logarithmic utilities, with no prices! It turns out that the prices are the dual
variables on the supply constraints. We will see some nice applications of convex duality and
Fenchel conjugates in deriving this relationship. We will also see that this class of markets have a
relationship to the types of auction systems that are used at Google and Facebook [7, 8].

In the case of markets such as those for course seats, the problem is computationally harder and
requires combinatorial optimization. Current methods use a mixture of MIP and local search [6].

Market design is a huge area, and so it has many killer applications. The ones we will see in
this course include Internet ad auctions, how to assign course seats to students, and how to allocate
spectrum. However there are many others such as how to price and assign rideshares at Lyft/Uber,
how to assign NYC kids to schools, kidney exchange markets, etc.

5 Target Audience

These notes are targeted at Ph.D. students in operations research and computer science. They
assume a basic background in convex, linear, and integer optimization. They also assume knowledge
of basic computational complexity theory (e.g. that mixed-integer programming is NP-hard). Most
of these things can be learned alongside the course. The course does not assume any background
in game theory or mechanism design.
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Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level arti-
ficial intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

[15] Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press,
2016.

[16] Milind Tambe. Security and game theory: algorithms, deployed systems, lessons learned. Cam-
bridge university press, 2011.

[17] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[18] Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic
Behavior, 14(2):220–246, 1996.

[19] Haifeng Xu. The mysteries of security games: Equilibrium computation becomes combinatorial
algorithm design. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 497–514. ACM, 2016.

7


	Why Economics, AI and Optimization?
	Nash Equilibrium
	Stackelberg Equilibrium
	Market Design
	Target Audience
	Acknowledgments

