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1 Recap

The last few times we have learned about online convex optimization, and we saw algorithms
for minimizing regret such as Hedge and Online Mirror Descent. In this lecture we are going
to introduce a new type of online-learning problem concerned with vector-valued games. This
framework will eventually be shown to lead to one of the fastest algorithms for game solving in
practice.

2 Blackwell Approachability

In two-player zero-sum games we saw that there exists a value for the game v such that the row
player can choose a strategy x assuring that the payoff will be in the set (−∞, v] no matter what
the column player does, and vice versa the column player can assure that the payoff lies in the set
[v,∞), no matter what the row player does.

In Blackwell approachability we ask whether there is a way to generalize the notion of forcing
the payoffs to lie in a particular set to vector-valued games.

We consider the following setup:

• The row and column players choose strategies from compact convex sets X and Y respectively.

• There is a bilinear vector-valued payoff function f(x, y) ∈ Rm.

• There is a closed convex target set C.

• We will assume that f(x, y) ∈ B(0, 1), C ⊆ B(0, 1), where B(0, 1) = {g : ‖g‖2 ≤ 1}.

The goal for the row player is to get payoffs f(x, y) to lie inside C. The case of a single-
shot game is trivially analyzed: it is generally only possible to do this if there exists x such that
f(x, y) ∈ C, ∀y ∈ Y . So in general this won’t be possible. However, it turns out that much more
interesting things can be said about a variant where the two players are playing a repeated game.
In particular, the players choose actions xt, yt at each timestep t. The goal for the row player is to
have the average payoff vector f̄t = 1

t

∑t
i=1 f(xt, yt) approach C, while the goal of the column player

is to keep f̄t from approaching C. We will measure the distance as d(f̄t, C) = minz∈C ‖z − f̄t‖2
We will say that
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Definition 1. A target set C is approachable if there exists an algorithm for picking xt based on
x1, . . . , xt−1, y1, . . . , yt−1 such that d(f̄t, C)→ 0 as t goes to infinity.

C
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Figure 1: Blackwell approachability requires that the sequence {f̄t}t=1 approaches C no matter the
choices of the y player.

A stronger notion is that

Definition 2. A target set C is forceable if there exists x such that f(x, y) ∈ C for all y ∈ Y .

2.1 Scalar Approachability

In the special case where m = 1 we get a scalar approachability game. As discussed at the beginning
of this section, this can be analyzed via minimax theorems. In particular, for the scalar case target
sets are intervals, and we may analyze only intervals of the form (−∞, λ] without loss of generality.
Clearly, an interval (−∞, λ] is approachable if λ ≥ v, where v is the value of the game associated
to the bilinear function f in Sion’s minimax theorem. This follows because if the row player plays
any strategy x such that they are guaranteed at least v, then f(x, yt) ∈ (−∞, λ] for all t no matter
the yt. Conversely, if λ < v, then by Sion’s theorem the column player may play a strategy y such
that no matter the xt, f(xt, y) ≥ v > λ. We thus have the lemma

Lemma 1. In scalar approachability games, the following three statements are equivalent:

• A target set (−∞, λ] is approachable.

• A target set (−∞, λ] is forceable.

• λ ≥ v, where v is the value of the game associated to f,X, Y in Sion’s minimax theorem.

2.2 Halfspace Approachability

We first analyze the special case where the target set is a halfspace H = {h : 〈h, a〉 ≤ b}. Halfspaces
turn out to have the nice property that forceability is equivalent to approachability:

Lemma 2. A halfspace H is approachable if and only if it is forceable.

Proof. The proof consists in reducing halfspace approachability to a scalar approachability game.
To do that, let f̂(x, y) = 〈a, f(x, y)〉. Now we clearly have that forcing H wrt. f is equivalent to
forcing (−∞, b] wrt. f̂ . Say x∗ forces (−∞, b], then

b ≥ f̂(x∗, y) = 〈a, f(x∗, y)〉, ∀y ∈ Y,

and so x∗ also forces H, and vice versa.
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For approachability we have that the distance from f̄t to H satisfies

d(f̄t, H) = d
(
〈a, f̄t〉, (−∞, b]

)
= d

(
1

t

t∑
i=1

〈a, fi〉, (−∞, b]

)
.

Thus approachability of H is equivalent to approachability of (−∞, b].
From Lemma 1 we have that approachability and forceability are equivalent for (−∞, b], so they

must be equivalent for H.

2.3 Blackwell’s Approachability Theorem

Now we are ready to analyze the general case of when a convex compact set C is approachable.
Blackwell proved the following:

Theorem 1. A convex compact set C is approachable if and only if every halfspace H ⊇ C is
forceable. If every halfspace is forceable then C can be approached at a rate of 2√

T
.

Blackwell’s proof is constructive. It is based on the following algorithm for approaching C when
all halfspaces containing C are forceable: At every timestep t, do the following:

• If f̄t ∈ C, play any xt.

• Else consider the projection φt of f̄t onto C. We construct a halfspace H with normal vector
at = φt − f̄t, and constant bt = 〈at, φt〉. Play any xt forcing H.

C

Ht
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φt

Figure 2: The tangent halfspace forced in Blackwell’s theorem.

The algorithm repeatedly takes the halfspace tangent to the projection of f̄t, and forces it. We
now prove Blackwell’s theorem.

Proof. Say that C is approachable. Then we may play any algorithm guaranteed to approach C,
and we will then be guaranteed to approach every H ⊇ C.

Now assume that all H ⊇ C are approachable, and play Blackwell’s algorithm. First note that
since φt is the projection of f̄t onto a convex set H (this follows from how we constructed H) we
have from first-order optimality:

〈φt − f̄t, z − φt〉 ≥ 0, ∀z ∈ H. (1)
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Let ft+1 = f(xt+1, yt+1). We have

d(f̄t+1, C)2 = min
z∈C
‖f̄t+1 − z‖22

≤‖f̄t+1 − φt‖22

=

∥∥∥∥ t

t+ 1
f̄t +

1

t+ 1
ft+1 − φt

∥∥∥∥2
2

; by definition of f̄t+1

=

∥∥∥∥ t

t+ 1
(f̄t − φt) +

1

t+ 1
(ft+1 − φt)

∥∥∥∥2
2

=
1

(t+ 1)2
(
t2‖(f̄t − φt)‖22 + ‖(ft+1 − φt)‖22 + 2t〈f̄t − φt, ft+1 − φt〉

)
≤ 1

(t+ 1)2
(
t2‖(f̄t − φt)‖22 + ‖(ft+1 − φt)‖22

)
; by (1)

=
1

(t+ 1)2
(
t2d(f̄t, C)2 + ‖(ft+1 − φt)‖22

)
Telescoping this inequality we have

d(f̄t+1, C)2 ≤ 1

(t+ 1)2

t∑
i=1

‖ft+1 − φt‖22 ≤
4t

(t+ 1)2
≤ 4

t+ 1
,

where the second inequality is from the fact that we assumed payoffs to lie in the norm-ball B(0, 1).
Taking the square root of both sides gives the theorem.

3 Regret Matching

Blackwell’s constructive result can easily be converted to a regret minimization algorithm for linear
losses over a simplex ∆n. For each pure action i we say that rt,i = 〈gt, xt〉 − gt,i is the regret from
not playing action i rather than xt, and we let rt be the vector of all n regrets. We will use r√

n

as our vector-valued payoff. Note that the regret is now RT = maxi
∑T

t=1 rt,i, and having regret
grow sublinearly is equivalent to r̄t = 1

t

∑t
k=1 rk approaching the non-positive orthant as t tends

to infinity. Thus our target set is C = Rn
−.

By Blackwell’s theorem having r̄t approach Rn
− can be done by repeatedly forcing tangent

halfspaces. To do so, let φt be the projection of r̄t onto Rn
−. Note that the normal vector at = r̄t−φt

simply thresholds r̄t at zero, setting all negative entries to zero. Now, we will force rt+1 to be in
the halfspace with normal vector at by ensuring 〈at, rt+1〉 = 0. To do so, first consider the square
matrix of pairwise regrets B, where Bij is the regret from playing i rather than j under gt+1. We
have that Bij = −Bij , so B is skew-symmetric, which means that 〈q,Bq〉 = 0 for all q. We can
choose xt+1 = at

‖at‖1 , in which case we get that the next regret is rt+1 = Bxt+1 = B at
‖at‖1 , and now

it satisfies 〈at, rt+1〉 = 0, and thus we forced the desired halfspace.
Summarizing what we did in terms of our standard regret minimization framework, we have an

algorithm that works as follows:

• Play arbitrary x1

• Keep a sum r̂t =
∑t

k=1 rk of regret vectors

• At time t+ 1 set xt+1,i =
[r̂t,i]

+∑t
k=1[r̂k]

+ ([·]+ denotes thresholding at 0)
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Figure 3: The next regret vector rt+1 lies in the halfspace forced in Blackwell’s theorem.

• If no regrets are positive, play uniform strategy

This algorithm is called regret matching, and by Blackwell’s theorem regret matching has regret

that grows on the order of O
(√

T
)

, assuming gt ∈ B(0, 1) for all t (if this does not hold we may

simply normalize the payoffs).

4 Regret Matching+

Finally, we present a variation on regret matching, which turns out to be immensely useful in
practice. In regret matching, remember that we took the sum of the regret vectors and thresholded
it at zero when generating xt+1. In regret matching+ (RM+), we only keep track of positive regrets.
Formally, we have the following algorithm:

• initialize Q1 = 0 and play x1 arbitrarily

• After seeing gt, set Qt =
[
t−1
t Qt + 1

t gt
]+

• At time t+ 1, play xt+1,i =
Qt,i

‖Qt‖1

The important observation for RM+ is that we are constructing a sequence that upper-bounds
regret, i.e. Qt ≥ r̄t. This is easy to see, as we are only dropping negative terms in the summation
that makes up r̄t.

Visually, we may think of it as moving along a face of Rn
−, while maintaining the same distance

d to Rn
− while moving towards 0. See Figure 4

Qt + rt+1

Qt+1
d

d

0

R2
−

Figure 4: The thresholding used in constructing Qt+1.

Theorem 2. RM+ approaches C = Rn
− at a rate of 2√

T+1
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Proof. Let Q∗t be the projection of Qt onto C. Let H be the halfspace {q : 〈Qt, q〉 ≤ 0} correspond-
ing to forcing in Blackwell’s theorem (since Q∗t = 0). We have

d(Qt+1, C)2 = min
z∈C
‖Qt+1 − z‖2

≤||Qt+1 −Q∗t ‖2

=‖Qt+1‖2; since Q∗t = 0

=‖ t

t+ 1
Qt +

1

t+ 1
rt+1‖2; since thresholding is distance preserving

=
1

(t+ 1)2
(
t2‖Qt‖2 + ‖rt+1‖2 + 2t〈Qt, rt+1〉

)
=

1

(t+ 1)2
(
t2‖Qt‖2 + ‖rt+1‖2

)
; by forcing rt+1 ∈ H.

By telescoping we now get

d(Qt+1, C)2 ≤ 1

(t+ 1)2
(
t2d(Qt, C) + ‖rt+1‖2

)
≤ 1

(t+ 1)2

t∑
k=1

‖rk+1‖2

≤ 1

(t+ 1)2
4t

≤ 4

(t+ 1)

Taking square roots concludes the theorem.

5 Overview of Regret Minimizers

At this point we have covered quite a few regret minimizers. In the coming lectures we will start
to look at how they can be used to solve zero-sum games, both matrix games and extensive-form
games. For now, let us quickly recap and compare our options. Say that we want to minimize
linear losses from [0, 1]n over a simplex ∆n (note that this covers convex losses with bounded dual
norm of the gradients). In that case we have covered 5 algorithms with two different types of regret
bounds:

• Regret bound: O
(√
T log n

)
: Hedge and OMD (entropy)

• Regret bound: O
(√

nT
)

: OMD (Euclidean), Regret Matching, and Regret Matching+.

6 Historical Notes and Further Reading

Blackwell approachability was introduced in [1]. Regret matching was introduced by [4]. The RM+

algorithm was introduced in [6] and proven correct by [7]. The proof of RM+ via modified Blackwell
approachability is, I believe, new. It was developed together with Gabriele Farina when working
on the papers Farina et al. [2, 3].

There aren’t many places to find coverage of Blackwell approachability, and furthermore all
the sources I know of cover it in quite different ways and levels of generality. Lectures notes 13
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and 14 of Ramesh Johari [5] cover the finite-action space case as well as regret matching and the
relationship to calibration. Another nice presentation for that case if that of Young [8]. The more
general proof of Blackwell’s theorem given here largely follows the one given in a blog post by
Farina at http://www.cs.cmu.edu/~gfarina/2016/approachability/.
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