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1 Introduction

In this lecture we introduce Stackelberg equilibrium. Stackelberg equilibrium is an equilibrium
notion for two-player general-sum games where one player is a leader and the other player is a
follower (it can also be generalized to multiple leaders and/or followers). This model is appropriate
for example when modeling competing firms and first-mover advantage, or as we will see in this
lecture, security settings centered around asset protection.

2 Stackelberg Equilibrium

We will consider a two-player normal-form game where there is a leader ` and a follower f . The
leader has a finite set of actions A` and the follower has a finite set of actions Af . We let ∆`,∆f

denote the set of probability distributions over the leader and follower actions. We will consider a
general-sum game with utilities ui(a`, af ) for i ∈ {`, f}. We abuse notation slightly and let

ui(x, y) = Ea`∼x,af∼y [ui(a`, af )] ,

where x ∈ ∆`, y ∈ ∆f are probability distributions over A` and Af respectively. In general we
assume that the leader is able to commit to a strategy x ∈ X, and given such an x, the follower
chooses their strategy from the best-response set

BR(x) = argmaxy∈∆fuf (x, y).

The goal of the leader is to choose a strategy a strategy x maximizing their utility subject to
the follower best responding. Formally, they wish to solve

max
x∈∆`

u`(x, y) s.t. y ∈ BR(x). (1)

However, this optimization problem has a problem currently. Can you see what it is?
The issue is that BR(x) may be set valued, and u`(x, y) generally would differ defending on

which y ∈ BR(x) is chosen. In that case we need a rule for how to choose among the set of best
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responses. In a strong Stackelberg equilibrium (SSE) we assume that the follower breaks ties in
favor of the leader. In that case the optimization problem is

max
x∈∆`,y∈BR(x)

u`(x, y). (2)

SSE is, in a sense, the most optimistic variant. Conversely, we may consider the most pessimistic
assumption, that ties are broken adversarially. This yields the weak Stackelberg equilibrium (WSE)

max
x∈∆`

min
y∈BR(x)

u`(x, y). (3)

In practice SSE has been by far the most popular. One major advantage of SSE is that it is
always guaranteed to exist, whereas WSE is not.

A first question we might ask ourselves is whether it always helps or hurts to be able to first
commit to a strategy, as compared to playing a Nash equilibrium.

First, let us consider the zero-sum case. If we are in a zero-sum game, then we already saw
from von Neumann’s minimax theorem that we can represent the Nash equilibrium problem as

min
x∈∆`

max
y∈∆f

〈x,Ay〉 = max
y∈∆f

min
x∈∆`
〈x,Ay〉.

It follows that Nash equilibrium and Stackelberg equilibrium are equivalent in this setting.
Second, consider the case where we restrict the leader to only committing to pure actions a ∈ A`,

then committing to a strategy first may hurt the leader (consider rock-paper-scissors). On the other
hand, if we allow commitment to any x ∈ ∆`, then it turns out that committing to a strategy only
helps.

Theorem 1. In a general-sum game, the leader achieves weakly more utility in SSE than in any
Nash equilibrium.

Proof. Consider the Nash equilibrium (x, y) that yields the highest utility for the leader. Since the
follower breaks ties in favor of the leader, we get that if the leader commits to x then the follower
can at worst pick y from BR(x). If they don’t pick y, then they must pick something that yields
even better utility for the leader.

Similarly, it can be shown that the WSE solution is at least as good as some Nash equilibrium
payoff for the leader (see Von Stengel and Zamir [9] for a proof). Thus, if we consider the range of
payoffs [L,H] from the lowest to highest in Stackelberg equilibrium, then that range lies above the
range that we would get for Nash equilibrium.

A classic example of the difference between Nash equilibrium and Stackelberg equilibrium is in
the context of inspection games. In an inspection game, an inspector chooses whether to inspect
or not, and the inspectee chooses whether to cheat or not. An example game is shown below

cheat no cheat

inspect -6, -9 -1,0
no inspection -10, 1 0, 0

The goal of the inspector is to deter cheating, and inspecting incurs a cost of −1. When cheating
occurs the inspector incurs a heavy negative cost, whether detected or not (so the goal is not to
catch cheaters, but rather to deter cheating). The inspectee gains utility from cheating undetected
(-10, 1), but incurs a heavy fine if they cheat and are inspected (-6,-9).
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There is a single unique Nash equilibrium in this game, where the inspector inspects with
probability 1

10 , and the inspectee cheats with probability 1
5 . This yields expected utilities of (-2, 0)

for the two players.
Now consider the same game, but where we allow the inspector to be the leader in a Stackelberg

game. Any strategy that inspects with probability at least 1
10 will make not cheating a best response

for the follower. The SSE of the game is for the inspector to inspect with probability 1
10 and the

inspectee to not cheat. This yields expected utilities (− 1
10 , 0), which is much better for the inspector.

Note furthermore that if we consider the WSE solution concept, then the inspector must inspect
with probability strictly greater than 1

10 in order to make not cheating the only best response. But
this means that a WSE does not exist, since for every leader strategy that inspects with probability
p > 1

10 , the leader can improve their utility by inspecting with any probability in the open interval
( 1

10 , p).
In the normal-form game setup given above, an SSE can be computed in polynomial time. In

particular, say that we wanted to maximize leader utility while getting the follower to commit to
a particular action af ∈ Af . We may solve this problem using the following LP:

max
x∈∆`

∑
a∈A`

xau`(a, af )

s.t.
∑
a∈A`

xauf (a, af ) ≥
∑
a∈A`

xauf (a, a′f ), ∀a′f ∈ Af

Now, in order to find the optimal strategy to commit to, we may iterate over all af ∈ Af , solve the
LP for each, and pick the optimal solution x∗ associated to the LP with the highest value.

Once we have the optimal strategy x∗, we may find the associated follower strategy simply by
picking the pure strategy af for which x∗ was the LP solution. Generally, it is easy to see that it
is always enough to consider only pure strategies when choosing the follower strategy in an SSE
(why?). The same holds true for WSE.

This LP-based algorithm also proves that an SSE is always guaranteed to exist.

3 Security Games

In the security games model (SGM) a defender (the leader) is interested in protecting a set of
targets using limited resource, while an attacker (the follower) is able to observe the strategy of
the leader, and best respond to it. A classical example would be that of protecting an airport:
say we have 5 vulnerable locations at the airport, but only 2 patrol units. How can we schedule
the patrols so as to provide maximum coverage across the 5 vulnerable locations, while taking into
account the fact that an attacker would prefer certain locations over others?

The basic security games model has a set of T targets (note that we could have a single target
appear twice in T , representing multiple time steps). The defender controls a set of resources R
that can be assigned to a schedule from a set S ⊆ 2T of possible schedules. A schedule is a subset
of targets that are simultaneously covered if a resource is assigned that given schedule (for example
in the airport example, a resource would be a patrol, and schedules would be the set of feasible
patrols across targets). We say that a target is “covered” if the defender assigns a resource to a
schedule that covers it. The action space for the attacker consists of choosing which single target to
attack. In the basic SSG model, the utility function of both the defender and attacker depends only
on which target is attacked, and whether it is covered or not. Formally, we say that the defender
receives utility ucd(t) if target t is attacked and covered, and utility uud(t) if target t is attacked an
not covered. Similarly, the attacker gains utility uca(t) if target t is attacked and covered, and uua(t)

3



if target t is attacked and not covered. If the resources R are not homogenous then there may be
an assignment function A : R→ S denoting the set of schedules s that resource r can be assigned.

For security games we will restrict our attention to SSE. Given a strategy x for the defender, we
get a deployment of resources to targets for the defender, with an induced probability distribution
pc(t|x) of whether each target is covered. A strategy for the attacker simply specifies a single target
t to attack. Thus for a strategy pair x, t the expected utility for the defender is pc(t|x)ucd(t) + (1−
pc(t|x)uud(t)), with attacker utility defined analogously.

3.1 Algorithms for Security Games

So now that we have a game model for security games, can we just apply our LP result on computing
SSE in order to get an SSE for security games? Not quite: in order to convert the SGM into a
standard normal-form game we get a combinatorial blow-up: consider that a pure strategy would
be a deployment of resources to targets. But now let’s say that we just have d patrols as our
resources and k targets, and a simple model where each patrol can cover exactly one target. In
that case we have

(
d
k

)
pure strategies for the leader. A similar blow-up happens for other natural

setups such as when each resource can cover two targets (e.g. air marshals that protect an outgoing
and then ingoing flight as their daily routine).

In the special case where each resource covers exactly one target (equivalently, schedules have
size 1) there is an LP-based approach that can still construct an SSE in polynomial time. This
LP still allows heterogeneous resources; below we let A(r) be the set of targets that resource r
is allowed to cover. The key idea in the LP is to use the marginal coverage probability pc(t|x)
as our decision variable. We will have an LP where the variable ct is the coverage probability on
target t, and the variable cr,t is the probability that resource r provides coverage for t ∈ A(r).
The goal is to maximize the defender utility subject to making some target t∗ a best response for
the attacker. We can then solve for each t∗ ∈ T as before, and pick the best. In this LP, we let
ua(t|c) = ctu

c
a(t) + (1− ct)uua(t), with ud(t|c) defined analogously.

max
c≥0

ud(t∗|c)

s.t. ct =
∑

r∈R s.t. t∈A(r)

cr,t ≤ 1, ∀t ∈ T∑
t∈A(r)

cr,t ≤ 1, ∀r ∈ R

ua(t|c) ≤ ua(t∗|c), ∀t ∈ T.

(4)

This LP is polynomial in size, even though the set of pure strategies is exponential in size. It is
however not immediately obvious whether the given coverage probabilities are implementable. It
turns out that they are, and this can be shown via the famous Birkhoff-von Neumann theorem.
Before stating the theorem, we need the definition of a doubly substochastic matrix, which is a
matrix M ∈ Rm×n such that all entries are nonnegative, each row sums to at most 1, and each
column sums to at most 1.

Theorem 2 (Birkhoff-von Neumann theorem). If M is doubly substochastic, then there exist ma-
trices M1,M2, . . . ,Mq , and weights w1, w2, . . . , wq ∈ (0, 1], such that:

1.
∑

k wk = 1

2.
∑

k wkMk = M

3. For all k, Mk is doubly substochastic, and all entries are in {0, 1}
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Informally, the theorem states that if we have a doubly substochastic matrix, then it is possible
to express it as a convex combination of “pure” or {0, 1} doubly substochastic matrices.

The coverage probabilities cr,t from our LP can be viewed as a matrix with rows corresponding
to resources and columns corresponding to targets. By the constraints in our LP, that matrix is
doubly substochastic. It follows from the Birkhoff-von Neumann theorem that there exists pure-
strategy matrices Mk (they are pure strategies by the 3rd condition of the theorem) such that their
convex combination under the weight vector w adds up the correct coverage probabilities (by the
2nd condition of the theorem). By the first condition, the vector w defines a mixed strategy.

One final worry is that we don’t know how large q will be in our application of the Birkhoff-von
Neumann theorem. Luckily, it turns out one can show (in general), that q is O((m+ n)2), and the
corresponding Mk, wk can be found in O((m+ n)4.5) time using the Dulmage-Halperin algorithm.

Unfortunately, in the more general case where schedules may cover more than one target the
trick using marginal coverage probabilities turns out to fail. In that case, computing an SSE turns
out to be NP-hard.

Still, it turns out we can formulate this problem as the following mixed-integer program (MIP):

max
c≥0

ud(t∗|c)

s.t. ct =
∑

r∈R s.t. t∈A(r)

cr,t ≤ 1, ∀t ∈ T∑
t∈A(r)

cr,t ≤ 1, ∀r ∈ R

ua(t|c) ≤ ua(t∗|c), ∀t ∈ T.

(5)

4 Criticisms of Security Games

In security games we make a number of assumptions that can easily be critiqued: first, we assume
that the attacker perfectly observes the defender strategy. Secondly, the defender knows exactly
what the utility function of the attacker is (and SSE relies heavily on this). Thirdly, we assume
that the attacker is perfectly rational. There are ways to address these assumptions. For example,
a lot of work has gone into modeling adversaries in a way that is robust either to misspecification
of the utility functions or followers not being perfectly rational.

5 Bayesian Games

One way to deal with uncertainty around utility is to assume that each player has a parameterized
utility function ui(·, ·|θi), where θi ∈ Θi is the type of player i. In Bayesian games, we assume each
player draws their type from a pair of known distributions over Θ`,Θf . The player observes their
own type before choosing an action, but not the type of the follower.

It turns out that in the special case where the follower has a single type θf and the leader has
a probability mass p`(θ) over a finite set Θ`, the LP approach for normal-form games can easily be
extended to this setting and yields an optimal strategy for the leader. However, the more interesting
case where the follower has multiple types is unfortunately NP-hard.

6 Historical Notes

The Stackelberg game model was introduced by Von Stackelberg [8] in order to analyze competing
firms and first-mover advantage.
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The foundations for the use of Stackelberg equilibrium in security games were laid by Von Stengel
and Zamir [9] who showed that it always helps to commit to a strategy, as long as mixed strategies
are allowed, and Conitzer and Sandholm [2] who gave efficient algorithms and complexity results
around computing Stackelberg equilibrium for various game models.

In the context of security, Stackelberg equilibrium was first applied to airport security at Los
Angeles International Airport [6], and has since been applied to problems such as preventing poach-
ing and illegal fishing [3] and airport security screening [1]. An overview of deployed systems and
new directions can be found in Sinha et al. [7].

The approach based on representing strategies in terms of the marginal probability of cover-
age was introduced by Kiekintveld et al. [4], and the results on polynomial-time algorithms and
computational complexity in this model were given by Korzhyk et al. [5].
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