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ABSTRACT
Revenue maximization in combinatorial auctions (and other mul-
tidimensional selling settings) is one of the most important and
elusive problems in mechanism design. The optimal design is un-
known, and is known to include features that are not acceptable
in many applications, such as favoring some bidders over oth-
ers and randomization. In this paper, we instead study a com-
mon revenue-enhancement approach—bundling—in the context of
the most commonly studied combinatorial auction mechanism, the
Vickrey-Clarke-Groves (VCG) mechanism. A second challenge in
mechanism design for combinatorial auctions is that the prior distri-
bution on each bidder’s valuation can be doubly exponential. Such
priors do not exist in most applications. Rather, in many applica-
tions (such as premium display advertising markets), there is es-
sentially a point prior, which may not be accurate. We adopt the
point prior model, and prove robustness to inaccuracy in the prior.
Then, we present a branch-and-bound framework for finding the
optimal bundling. We introduce several techniques for branching,
upper bounding, lower bounding, and lazy bounding. Experiments
on CATS distributions validate the approach and show that our
techniques dramatically improve scalability over a leading general-
purpose MIP solver.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
J.4.a [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Theory, Economics

Keywords
Bundling, search, integer programming, combinatorial auctions,
VCG, revenue maximization

1. INTRODUCTION
Revenue maximization in combinatorial auctions (and other mul-

tidimensional selling settings) is one of the most important and
most elusive problems in mechanism design. The optimal auction
for a single item is known [32] and has been generalized to multiple
units of one item [30], but the problem remains open even with just
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two items.1 The fact that the general optimal combinatorial auction
mechanism is unknown is not a coincidence: even a special case of
the problem of designing the highest-revenue deterministic multi-
item auction is NP-complete, even in the private values setting [15].
This suggests that, unlike for single-item settings, a concise char-
acterization of optimal combinatorial auctions cannot exist (unless
P=NP). This is one of the key motivations for automated mecha-
nism design where an algorithm is used to design the mechanism
for the setting (prior probability distribution) at hand (e.g., [13, 14,
15, 37, 27, 28, 10]).

Even with automated design, and putting aside the computational
complexity of the design problem, it is not clear that optimal com-
binatorial auctions are viable in practice, for the following reasons:
(a) The revenue-optimal mechanism includes features that are not
acceptable in many applications, such as favoring some bidders
over others, and randomization. (b) The optimal mechanism is dif-
ficult to understand. This, itself, can be a deterrent to its adoption.
(c) Even in the private values setting, the prior distribution on each
bidder’s valuation can have support the size of which is doubly ex-
ponential. Specifically, if there are m items and a bidder can have
any of k values for each bundle, the support of the prior has k2

m−1

points because that is the size of the bidder’s type space. Such prior
distributions have not been (and cannot be) constructed in most ap-
plications. In this paper, we study a practical automated mechanism
design setting where we avert these problems.

We avert the first two problems by only considering one com-
mon, practical way of increasing revenue, bundling items [33, 11,
24, 18, 6, 25, 9, 22, 45]. Our mechanisms will be fair in the sense
that they are symmetric across bidders, and deterministic, unlike
the optimal auction. Specifically, we will develop algorithms for
optimal bundling in the context of the most commonly studied com-
binatorial auction mechanism, the Vickrey-Clarke-Groves mecha-
nism (VCG) [43, 12, 19].2 In the VCG—even with bundling—each
bidder’s dominant strategy is to bid truthfully.

We avert the third problem by not assuming that we have access
to such a prior. In many (arguably most) applications there is es-
sentially just a point prior, and it may not be accurate. In other
words, the seller has expectations about how much bidders would
be willing to pay for various bundles, but the seller does not have
a sophisticated probabilistic model about any bidder’s valuations
(which are not independent across bundles). This is the case, for
example, in TV advertising sales and in premium, guaranteed dis-
play advertising sales. (In both of those markets, the sales occur
manually, and the inventory is implicitly bundled in ad hoc ways

1Relatively simple special cases have been solved, yielding inter-
esting insights (e.g., [3, 5]).
2While the VCG itself has taken some time to get adopted in appli-
cations, it has been successfully adopted, for example, by Facebook
for its advertising auctions.



today, with typically 2-4 targeting attributes.
Another, very practically oriented, potential application of our

work is to help an auction designer choose bundles through ex-
ploratory search. If no distribution is available, the auction designer
could generate sets of reasonable bids in an iterative fashion, com-
pute optimal bundlings, and choose a final bundling based on the
intuitions gained from this.

Therefore, we adopt the point prior model. However, we also
acknowledge the fact that in practice the point prior might not be
accurate; we prove robustness of our approach to inaccuracy in the
prior. One might also ask why we do not simply make take-it-or-
leave-it offers to take the entire surplus for the seller given that we
have a point prior. The reason we do not use that mechanism is that
it is highly nonrobust to error in the prior: even slight overpricing
on a bundle will cause the revenue from that bundle to drop to zero.

We develop a custom branch-and-bound framework for finding
the optimal bundling. We show that algorithms in that framework
scale significantly better than a leading general-purpose integer pro-
gram solver, CPLEX. We design and compare several techniques
for upper bounding, lower bounding, branching, and lazy child
node evaluation. Experiments on the leading combinatorial auction
test suite, CATS [26], validate the approach.

Our approach to bundling is computational. The goal is not to
build insight from manual analysis that can then loosely be applied
to practice—although the computational approach can help develop
insight as well and fuel future theory. Rather, the goal is to develop
a computational methodology that can be used in practice. It is
therefore key that we make the computational techniques scalable.

1.1 Related work
Most prior work on bundling has been in the context of posted

prices, for example, catalog pricing. Bundle pricing in economics
has often focused on analyzing two-item settings [41, 1, 16, 20, 31,
40]. (One exception is that Armstrong [2] examines m-item set-
tings, but places severe restrictions on buyers’ utility functions. An-
other exception is that Manelli et al. [29] provide results for when
bundled catalog sales are optimal, mainly in the two- and three-item
settings.) There has been some computational work on bundle pric-
ing, for example, mixed integer programming for optimizing bun-
dle prices [21] and data-driven pricing of car configurations [35].

Benisch et al. [7] present a framework for automatically suggest-
ing high-profit bundle discounts based on historical purchase data.
There has also been work on pricing bundles of information goods,
where it is usually assumed that valuations are based only on the
size of the bundle and there are no marginal costs [25, 9, 6]. The
operations research literature has also addressed the information
goods setting. For example, Hitt et al. [22] and Wu et al. [45] con-
sider a bundle pricing mechanism for information goods that allows
customers to choose up to m′ items from a larger pool of m items.

Walsh et al. [44] study inventory bundling in premium display
advertisement campaign selling, with the goal of making the win-
ner determination problem smaller and easier. Others have recently
studied that problem as well [42, 23]. That objective is different
than revenue maximization.

There has been some work on bundling in auctions. Several pa-
pers considered the problem of bundling all items versus separate
sales [33, 11]. Armstrong [3] shows that in two-item auctions with
two valuations per bidder, the revenue-maximizing auction is ef-
ficient. Avery et al. [5] show that this does not hold in general
two-item settings, and that randomization can increase revenue.

Prior work on automated mechanism design has produced de-
terministic and randomized mechanisms for revenue-maximizing
combinatorial auctions [14, 15, 27, 28]. Since our paper focuses
on the VCG mechanism, our bundling is deterministic. There has
been work on generalizing the VCG to higher-revenue dominant-

strategy auction mechanisms. Likhodedov et al. [27, 28] study a
generalization of VCG called virtual valuations combinatorial auc-
tions (VVCAs) and a generalization of them, affine maximizer com-
binatorial auctions, which are auctions where the VCG is run on
affine transformations of the bids. Those mechanism design algo-
rithms scaled to a handful of items. For the restricted setting of
additive valuations, Jehiel et al. [24] analyze a subclass of VVCAs
called λ-auctions, which are nevertheless rich enough to allow the
bundling to depend on the bids. Our approach of bundling first and
then simply running VCG is easier for buyers and sellers to under-
stand. Also, none of the prior papers present bundling algorithms.
Core-selecting combinatorial auctions are another form of combi-
natorial auctions that has recently become popular in spectrum auc-
tions [17]. They can generate higher revenue than the VCG. How-
ever, equilibria are not known (except in the known-valuations set-
ting), so game-theoretic simulation of revenue properties is not pos-
sible. Core-selecting combinatorial auctions can also suffer from
revenue deficiencies that bundling can alleviate.

To our knowledge, there has been no prior work on our setting.

2. PROBLEM FORMULATION
We assume that we have a set of bidders N = {1, . . . , n}, a

set of items M = {1, . . . ,m}, and a set of bids B. (The bids
represent the, possibly inaccurate, point prior, and are given before
actual bids are received.) Bi is the set of all bids for bidder i, and
B−i the set of all bids that do not belong to i. A bid is a tuple
〈Sj , vj〉, where Sj ⊆ M is the set of items that the bid wants and
vj ≥ 0 is a valuation. For ease of exposition, we sometimes use [k]
to refer to the set {1, . . . , k} for k ∈ N.

We denote an allocation of items to bidders by α, and αi is the
set of items allocated to bidder i in the allocation. We overload
vi(α) to be bidder i’s valuation for αi.

We work in the standard combinatorial auction setting with the
XOR bidding language [36] so each bidder can have at most one
of her bids win. Every item can be assigned to at most one bidder.
There are no externalities: the valuation for each bidder i depends
only on the items that i receives. There is free disposal: the value
of a subset of items M ′ ⊆ M for bidder i is less than (or equal
to) the value of M . A bundle b ⊆ M is a set of items from M . A
bundling φ is a set of bundles that partitions M . We denote the set
of all possible bundlings by Φ.

We say that two bids i, j intersect if their item sets overlap: Si ∩
Sj 6= ∅. Bundling can introduce additional overlap between bids,
and for this reason we need a more general notion of overlap. Two
bids i, j bundling-intersect in a given bundling φ if they intersect
or there exists at least one item in each of the two bids so that
those two items have been included in the same bundle. Formally,
two bids i, j bundling-intersect in bundling φ if they intersect or
∃ai ∈ Si, aj ∈ Sj , b ∈ φ such that ai ∈ b, aj ∈ b. We denote the
set of bundling-intersecting items of the two sets by Si u Sj .

We will be running the VCG to auction the bundles simultane-
ously. In the vanilla VCG without bundling, the allocation of items
to bidders is computed so that it maximizes social welfare (hence-
forth referred to as welfare): α∗ = arg maxα

∑n
i=1 vi(α). The

payment from each bidder i is pi = W ∗,−iM,B − W ∗,−iM−i,B
, where

W ∗,−iM,B is the optimal welfare where i receives no items, and we let
W ∗,−iM−i,B

=
∑
j 6=i vj(α

∗) be the welfare of the other agents in α∗.
We denote by WB(α) the welfare of an allocation α for bids B.

In our setting, we have to take the bundling into account in the
VCG. For a given bundling φ ∈ Φ, the VCG allocation α∗ is com-
puted as before, but with the added constraint that no two items that
are in the same bundle can be allocated to different bidders (i.e., for
any two winning bids i and j, Si u Sj = ∅). We denote the wel-



fare of such an allocation byW ∗φ,B = maxα∈Aφ
∑
i∈N vi(α), and

the welfare of the welfare-maximizing allocation over the bundling,
where bidder i is excluded, as W ∗,−iφ,B = maxα∈Aφ

∑
j 6=i vj(α).

Similarly, running VCG on bundling φ yields payments

pi = W ∗,−iφ,B −W
∗,−i
φ−i,B

from each bidder i. Here, φ−i is the set of bundles from φ that are
not allocated to bidder i. The goal in optimal bundling is to find a
bundling φ∗ such that the revenue rφ∗ =

∑n
i=1 pi is maximized.

3. BASIC PROPERTIES OF THE SETTING
In this section we study some important basic properties of the

proposed approach.
Number of bundlings The number of bundlings grows extremely
rapidly with the number of items. The number of ways to bundle
(exhaustively partition)m items is called the Bell number, Bm. The
Bell numbers can be defined recursively: Bm =

∑m−1
k=0

(
m−1
k

)
Bk.

Sandholm et al. [38] proved that Bm ∈ ω(m
m
2 ). Berend et al. [8]

proved that Bm < ( 0.792m
ln(m+1)

)m.

NP-hardness We first prove hardness of our problem (revenue-
maximizing bundling in the VCG setting with a point prior).

THEOREM 1. Finding the optimal bundling is NP-hard.

PROOF. The proof is by reduction from bin packing. The bin
packing problem is the following: Given a set of n objects of sizes
x1, ..., xn, and positive integers k and V , is it possible to fit the n
objects into k bins of size V ?

For each bin i = 1, ..., k, we generate n + 1 items: abini and
Gi = {gi1, ..., gin}, and two bidders with bids bbini , bbini′ respec-
tively, where Sbini = {abini } ∪Gi, Sbini′ = {abini }, and valuations
vbini = V + M, vbini′ = M , for some M > V,M >

∑n
j=1 xj .

The set Gi = {gi1, ..., gin} is there to allow up to n other bids
to intersect with bbini , without having the bids themself intersect-
ing. For each of the objects j = 1, ..., n, we generate an item
aobjj and a bidder with bid bobjj with Sobjj = {aobjj }, and valua-
tion vobjj = xj . Bundling an object item aobjj with some bin item
gli represents putting object j in bin i. The only pairs of bids that
overlap before bundling are bbini , bbini′ .

We claim that there is a solution to the bin packing problem iff
there is some bundling with revenue r = kM +

∑n
j=1 xj for the

above bundling problem. Now, assume that we have some solu-
tion with revenue r ≥ kM +

∑n
j=1 xj . Clearly, it cannot be the

case that any two items such that Sbini ∩ Sbinj 6= ∅ for some bids
bbini , bbinj are bundled together, as this would cause revenue r ≤
(k−1)M +

∑n
j=1 xj < kM , since only k−1 bids with valuation

above or equal toM can now win, and the remaining bids can have
aggregate valuation at most

∑n
j=1 xj < M . Hence, we are guar-

anteed kM revenue from the bids {bbini , bbini′ : i = 1, ..., k}, and
we know that they will not be bundled together. Now, each of the
bids bobjj must be contributing xj to revenue (either by paying that
amount or causing one other bidder to pay that much more), since
they are the only bids left that can be made bundling-intersecting
with any other bid through bundling, and they have no competition
if unbundled. We also know that any two bids bobji , bobjj cannot
be made bundling-intersecting. If they were, the revenue obtained
from the two would be at most max(vobji , vobjj ) (since they can
be made bundling-intersecting with at most one winning bid, and
alternatively if one of the two bids wins, its payment cannot ex-
ceed its valuation). It follows that the bids bobjj must bundling-
intersect with the bids bbini , which are already contributing kM
revenue. Let Bobji be the set of bids bobjj that bundling-intersect

with bbini . We must have M +
∑
j∈Bobji

xj ≤ M + V , since oth-

erwise r < kM +
∑n
j=1 xj , as some xj is then not contributing

its full valuation. Now, we can take the solution and turn it into a
solution to the bin packing problem. Since we know that all bobjj
bundling-intersect with one bbini each, we take each such j and as-
sign that object to bin i. Since

∑
j∈Bobji

xj ≤ V for all i, we know
that this is a valid packing.

Conversely, if there is a solution to the bin packing problem,
there is a bundling such that all bids bobjj bundling-intersect with
one bbini each, andM+

∑
j∈Bobji

vobjj = M+
∑
j∈Bobji

xj ≤ V +

M for all i. Hence we can get revenue at least kM+
∑n
j=1 xj .

In the instances generated by the reduction in the proof of Theo-
rem 1, the winner determination problem is easy. This shows that
the bundling problem is hard in itself. The NP-completeness of
winner determination does, however, imply that the general opti-
mal bundling problem is not contained in NP. Given a bundling with
proposed revenue k, verification that it achieves revenue k requires
computing the (exact, due to revenue nonmonotonicity) social-wel-
fare maximizing outcomes, in order to compute payments.

Ghosh et al. [18] similarly show NP-hardness for the problem
of computing the optimal bundling in their model, which assumes
additive valuations. Their NP-hardness result relies on this, as their
reduction uses the fact that bundle valuations can be expressed
compactly in this setting. For the XOR language, representing the
same valuations would take an exponential number of constraints,
and thus hardness of our setting does not follow from theirs.
Revenue is nonmonotonic in bidders It is known that the VCG
is not revenue monotonic in bidders [4], that is, adding bidders
can decrease revenue. Rastegari et al. [34] characterize a broader
class of mechanisms for which revenue monotonicity cannot be
achieved. Our setting falls outside of this class of mechanism.
Nevertheless, we can show revenue nonmonotonicity in our setting.
Consider the valuations in Figure 1 Left. The optimal bundling is
to sell the items separately, in which case bidders 3 and 4 receive
items Y and X respectively, with payments 3 and 5, yielding total
revenue of 8. If we remove bidder 4, the optimal bundling is still
to sell the items separately, where bidder 1 wins both items, with a
payment of 9, which is also the revenue. Thus removing bidder 4
can increase revenue.

X Y XY
Bidder 1 0 0 10
Bidder 2 4 0 4
Bidder 3 0 5 5
Bidder 4 7 0 7

X Y XY
Bidder 1 10 0 10
Bidder 2 5 0 5
Bidder 3 0 2 2
Bidder 4 0 1 1
Bidder 5 0 20 20

Figure 1: Left: Bidder valuations for a game with 4 bidders and 2
items. Right: Bidder valuations for a game with 5 bidders and 2
items. In both tables, the XY column denotes bidder valuations for
the bundle.

Coarseness of the optimal bundling is nonmonotonic in bid-
ders The optimal bundling can become coarser with the addition
of a bidder. An example is given in Figure 1 Right. The optimal
bundling without Bidder 5 is to sell X and Y separately, whereas
with 5 it is optimal to bundle.
Low worst-case revenue It is well known that the VCG can be
arbitrarily far from optimal in terms of revenue. Consider two bid-
ders, and items X and Y, where bidder 1 bids va for X and bidder
2 bids vb for Y, and there are no other bids. In this case the VCG
revenue is 0. For settings such as this, optimal bundling can have
arbitrarily high revenue lift over VCG since we can bundle X and
Y, and earn min(va, vb).



Even with optimal bundling in the VCG, we can have arbitrarily
high loss compared to what is possible. This is because the seller
would give away |v1 − v2| of the surplus (and this part can be
arbitrarily large) while with reserve prices of v1, v2 on the items,
respectively, would allow the seller to capture the entire surplus.
Robustness of the proposed approach Another practical revenue-
enhancement technique is reserve pricing. Since a point prior is
typically imprecise in practice, using reserve pricing can lead to
high revenue loss. Consider again the example in th previous para-
graph, but where the point prior is that each bidder i has valua-
tion vi = v and the bidder’s true distribution p is p(vi = v) =
ε, p(vi = v − δ) = 1 − ε. In this case, if the reserve price is set
between v − δ and v, the expected loss in revenue is 2(1 − ε)v.
In contrast to this, optimal bundling in the VCG would only have
an expected loss of 2εv + (1 − 2ε)(v − δ) < v. As shown in the
example above, optimal bundling is more robust to inaccuracy in
the point-prior than reserve-pricing. This is important, as the avail-
ability of precise point-priors is unlikely in real-world applications.
In this section we make this notion of robustness more precise, as
we show the following result. In contrast, bundling for the VCG is
robust to error in the (point) prior:

THEOREM 2. The revenue from the VCG with optimal bundling
(which may change based on bidder valuations) is Lipschitz contin-
uous in the valuations of the bidders with Lipschitz constant n− 1.
This bound is tight.

To prove this, we first prove the following lemma.

LEMMA 3. The revenue from the VCG with any fixed bundling
is Lipschitz continuous in the valuations of the bidders with Lips-
chitz constant n− 1.

PROOF. The revenue obtained from VCG on a bundling φ can
be written as

rφ = −(n− 1) ·W ∗φ,B +

n∑
i=1

W ∗,−iφ,B (1)

where W ∗φ,B is the welfare of the welfare-maximizing allocation
for the bids B, and W ∗,−iφ,B denotes the same when bidder i’s bids
are excluded. Thus, it suffices to show that all the terms in Equa-
tion 1 are Lipschitz continuous in bidder valuations.

Assume that some bidder i changes his valuation for some bid j,
and let B′ be the new set of bids, where v′j is the new valuation for
bid j. We now show that the change in welfare ∆W = |W ∗φ,B −
W ∗φ,B′ | is bounded by ∆vj = |vj − v′i|. For any allocation α such
that j is winning, we get that the change in welfare is ∆vj , whereas
for any allocation α′ such that j is not winning, the welfare remains
the same. Hence, the previously winning allocation α can increase
or decrease by at most ∆vj . Since WB(α) ≥ WB(α′) for all α′,
the new winning allocation α∗ satisfies WB′(α

∗) ≤ WB(α) +
∆vj . For the lower bound, we have WB′(α) ≥ WB(α) − ∆vj ,
and hence α∗ must satisfy WB′(α

∗) ≥WB(α)−∆vj .
Since all terms are welfare maximizations over different sets of

bidders, this proves that rφ is Lipshitz continuous in bidder valua-
tions, with a Lipschitz constant of n − 1 (because the n − 1 term
and n terms in the summation change in opposite directions, and
the summation over n terms only has n− 1 terms that can change,
as W ∗,−iφ,B does not depend on vj).

With this lemma, we are now ready to prove Theorem 2.

PROOF. There are two possible cases. In the first case, the op-
timal bundling does not change, and in the second case it changes.
The proof of the first case is immediate from Lemma 3. For the
second case, let φ1 and φ2 be the old and new optimal bundlings,

respectively. By Lemma 3 we can bound the revenue of a bundling
under the new valuation using the old valuation:

rB(φ)− (n− 1) ·∆vi ≤ rB′(φ) ≤ rB(φ) + (n− 1) ·∆vi
By optimality,

rB′(φ2) ≥ rB′(φ1) ≥ rB(φ1)− (n− 1) ·∆vi
From the fact that φ1 is optimal for the original bids (B) we

know that rB(φ2) ≤ rB(φ1) and hence

rB(φ2) + (n− 1) ·∆vi ≤ rB(φ1) + (n− 1) ·∆vi
By Lemma 3, the left hand side of this inequality is an upper bound
for rB′(φ2). Thus we get

rB(φ1)− (n− 1) ·∆vi ≤ rB′(φ2) ≤ rB(φ1) + (n− 1) ·∆Bi
So, the new optimal revenue is bounded both above and below as
shown above, and is (by the formulas above) Lipschitz continuous
with Lipschitz constant n− 1.

Finally, we show that the bound is tight. Consider the case with
2 items X,Y and 3 bidders {b1, b2, b3}, where b1 has valuation 1
for X, b2 has valuation 1 for Y and b3 has valuation 1

2
for X and

for Y. The optimal bundling yields revenue 1, but if b3 increases
his valuation for both items to 1, the revenue increases to 2, and the
increase in revenue is 1 = 1

2
· (n− 1).

This shows that our approach is robust to inaccuracy in the prior
in the following sense: If the point-prior turns out to be inaccurate,
the change in revenue is at worst linear in the sum of inaccuracies
in the prior. It is further worth pointing out that for m items, at
most 3 ·m2 bids can affect the payments. Thus, the number of bids
potentially being exponential in the number of items does not cause
huge revenue shifts, even if there is inaccuracy for all bids.

4. MIXED INTEGER PROGRAM (MIP)
One approach to finding the revenue-maximizing bundling is to

formulate the problem as a mixed integer program (MIP), and then
use a general-purpose MIP solver—such as CPLEX—to solve the
formulation. In this section we develop such a formulation.

Figure 2 shows the formulation. The basic idea behind this MIP
is that we have m potential bundles, and the boolean variables δa,b
denote whether item a is assigned to bundle b. Based on these
assignments, the VCG payments are computed. To break symme-
tries, we only allow each item a = 1, ...,m to be assigned to bun-
dles {1, ..., a}. Furthermore, items with index a > b can only be
assigned to the bundle with index b if the item with index b is also
assigned to the bundle. Each bid j has boolean variables Ij and I−ij
that denote whether the bid wins in the optimal allocation and op-
timal allocation excluding bidder i, respectively. Each bidder has
boolean variables Πj(b) and Π−ij (b) that denote whether the bid-
der is allocated bundle b in the respective allocations, and boolean
variables πj(a, b) and π−ij (a, b) that denote whether the bidder is
allocated item a through bundle b in the respective allocations. Fi-
nally, each real-valued variable pi denotes the payment that bidder
i must make. The objective function, (2), is the sum over the pay-
ment variables of the bidders. Constraint 3 sets the payment for
bidder i equal to the externality she imposes on the other bidders,
i.e., her VCG payment. Constraints 4-5 ensure that a bid j can only
be winning if that bidder is assigned all the items in Sj for each
allocation. Constraints 6-7 ensure that each bundle is assigned to
only one bidder in each allocation. Constraints 8-11 ensure that
a bidder can only receive item a through bundle b in each alloca-
tion if the bidder wins the bundle, and δa,b = 1, i.e., the item is
in the bundle. Constraints 12-13 ensure that each bidder wins only
one item in each allocation. Constraints 14-15 ensure that each
item is assigned to only one bundle and they break symmetries. Fi-



nally, Constraint 16 ensures that the welfare-maximizing allocation
is chosen for each bundling φ by ensuring that if all the δa,b that are
necessary to achieve φ are active, then the winning bids are active.

max

n∑
i=1

pi (2)

pi ≤
∑

j∈B−i

vj · I−ij −
∑

j∈B−i

vj · Ij ∀i ∈ N (3)

Ij ≤
m∑
b=1

πi(a, b) ∀i ∈ N, j ∈ Bi, a ∈ Sj (4)

I−ij ≤
m∑
b=1

π−ik (a, b) ∀i, k ∈ N, j ∈ Bk, a ∈ Sj (5)

n∑
i=1

Πi(b) ≤ 1 ∀b ∈ [m] (6)

n∑
k=1

Π−ik (b) ≤ 1 ∀i ∈ N, b ∈ [m] (7)

πi(a, b) ≤ Πi(b) ∀i ∈ N, a ∈ [m], b ∈ [m] (8)

π−ik (a, b) ≤ Π−ik (b) ∀i, k ∈ N, a ∈ [m], b ∈ [m] (9)

πi(a, b) ≤ δa,b ∀i ∈ N, a ∈ [m], b ∈ [m] (10)

π−ik (a, b) ≤ δa,b ∀i, k ∈ N, a ∈ [m], b ∈ [m] (11)∑
j∈Bi

Ij ≤ 1 ∀i ∈ N (12)

∑
j∈Bk

I−ij ≤ 1 ∀i, k ∈ N (13)

a∑
b=1

δa,b = 1 ∀a = 1, ...,m (14)

δa,b ≤ δb,b ∀b = 1, ...,m, a = b, ...,m (15)∑
(a,b)∈α∗

φ

δa,b − Ij ≤ |α∗φ| − 1 ∀φ ∈ Φ, j ∈ Bwin(M′) (16)

Ij , I
−i
j , πj(a, b), π

−i
j (a, b) ∈ {0, 1} (17)

Πj(a, b),Π
−i
j (a, b), δa,b ∈ {0, 1}, pi ≥ 0 (18)

Figure 2: Mixed integer program for finding the optimal bundling.

The MIP model suffers from several limitations. First, the MIP
has Ω(n|B|m2) boolean variables, which rapidly becomes unman-
ageable. Second, and more importantly, Constraint 16 is required
for every possible bundling, of which there are an extremely large
number, as mentioned in Section 3; additionally, but less signifi-
cantly, to generate each of these constraints, the welfare-maximizing
allocation must be found, which is NP-hard in itself. This could
potentially be alleviated by using constraint generation techniques
but even this is unlikely to yield acceptable scalability, as each
added constraint only cuts off solutions at that specific bundling,
and nowhere else. In addition, this would require resolving the al-
ready large MIP every time a constraint is added.

5. CUSTOM BRANCH-AND-BOUND
We will now move on to discussing our custom branch-and-

bound approaches. Later we show that these scale significantly
better than general purpose MIP solving.

5.1 Branching scheme
To find the optimal bundling we introduce a custom branch-and-

bound algorithm, FIND-BUNDLING. It is a tree search algorithm
that branches on items. At each node in the search tree, the algo-

rithm branches on an item, with each branch adding the item to a
different bundle. One of the branches corresponds to adding it to
the empty bundle. The algorithm explores nodes in best-first or-
der. The revenue obtained from the best solution found so far is a
global variable f∗; initially f∗ = 0. The pseudocode is given in
Algorithm 1.

ALGORITHM 1: FIND-BUNDLING

Input: Set of items M , Set of bids B
Output: Optimal revenue LB, Optimal bundling

1 LB← 0
2 insert ({{BRANCHINGITEM(M,B)}},∞) in OPEN

// Open is a priority queue of search tree fringe nodes,
// sorted in descending order of the second argument

3 while OPEN not empty do
4 (CURRENT, VAL)← next in OPEN
5 if UB(CURRENT,M,B)>LB then
6 i← BRANCHINGITEM(CURRENT,M,B)
7 for b in CURRENT do
8 CHILD← CURRENT with i added to b
9 f∗ = MAX(LB(CHILD,M,B),f∗)

10 insert (CHILD, UB(CHILD,M,B)) in OPEN

11 CHILD← CURRENT with {i} appended to the list of
bundles

12 insert (CHILD, UB(CHILD,M,B)) in OPEN

FIND-BUNDLING starts out with a bundling consisting of a sin-
gle item, chosen by the function BRANCHINGITEM(M,B) (Step 2).
At each node, the next item i to branch on is chosen (Step 6), and
in Step 7-10 FIND-BUNDLING creates a branch for each of the ex-
isting bundles, with i added to that bundle. For the last branch in
Step 11-12, a new bundle is added with i as the lone item in that
bundle. The branching factor at a given node is therefore the num-
ber of bundles already created plus one. For each node, the upper
bound is used for deciding where in the ordered OPEN list the node
is inserted.

5.2 Lower bounding
In Step 9 FIND-BUNDLING computes a lower bound at the node.

If a high lower bound is found, we can update f∗, and thereby
achieve better pruning.

We use the following technique for lower bounding. For any
node v in the search tree, we simulate a VCG auction on the bundles
decided on the search path from the root to v along with all the yet-
undecided (i.e., yet unbundled) items. Our lower bound is then the
sum of the VCG payments.

PROPOSITION 4. The sum of the VCG payments from selling
unbranched items separately is a valid lower bound.

PROOF. One option for FIND-BUNDLING is to take the branch
where every item is added in its own separate bundle for all yet-
undecided items. This path yields exactly the auction that is used
in the lower bound definition.

In the rest of the paper, whenever we refer to the revenue of a
node, we mean the value defined in this section.

To compute the lower bound, we make n + 1 calls (one overall
and one with each bidder removed in turn) to a subroutine that does
(optimal) combinatorial auction winner determination. We call that
routine DETERMINE-WINNERS. We use the standard MIP formu-
lation [36]. For the branch where the item is added alone in a bun-
dle, we can reuse the bound from the parent node, as this is exactly
the same MIP.

Typically in tree search/integer programming, if one does not use
a lower-bounding technique for the yet-undecided variables, one



simply (implicitly) uses a lower bound equal to the value from the
variables that have been decided on the path from the root to the
current node. For example, in winner determination for combina-
torial auctions, one uses the sum of the values of the bids that have
been accepted on that path (e.g., [36, 39]). Interestingly, in the
bundling setting one needs to be more careful. For example, us-
ing just the bids that are only interested in items that have already
been bundled on the path would not give a valid lower bound. The
reason is that this could discard a bidder that causes revenue non-
monotonicity (as shown in Figure 1.)

5.3 Upper bounding
In Steps 5 and 10, FIND-BUNDLING calls a function to upper

bound the revenue obtainable in the subtree rooted at the node. In
this paper we propose, and investigate the performance of, several
such techniques. These techniques are discussed in each of the fol-
lowing subsubsections, respectively. If the technique indeed gives
an upper bound (as opposed to sometimes giving a value that is
below the actual revenue obtainable in the subtree rooted at the
node), that is, the upper-bounding heuristic is admissible, FIND-
BUNDLING will always give the optimal solution. We will also
study their monotonicity, that is, whether the upper bound is non-
increasing down each search path.3

WELFARE The first, and simplest, upper-bounding technique is
to use the highest achievable welfare, constrained to honoring the
bundling from the path so far. Specifically, the technique gener-
ates a set of “items" M ′ consisting of the bundles created so far
in the search, and the remaining items unbundled, and then calls
DETERMINE-WINNERS on the “item" set. We call this heuristic
WELFARE.

PROPOSITION 5. WELFARE is admissible and monotonic.

PROOF. We prove monotonicity first. In the computation of
WELFARE, all yet-undecided items at the search node are unbun-
dled. So, WELFARE corresponds to the welfare of the finest bund-
ling achievable in that subtree. Naturally, the optimal welfare is
nondecreasing as we make strictly finer bundlings. It follows that
WELFARE is monotonic.

We prove admissibility next. The welfare at a node upper bounds
the revenue at the node. For any descendant d of the current node,
we have that WELFARE at d upper bounds the revenue at d. From
monotonicity we have that WELFARE at the current node is no less
than WELFARE at d. Thus WELFARE at the current node is an
upper bound.

VCG+ Our second upper-bounding technique is like computing
VCG payments for the bundling at the node but with the negative
term chosen so as to maximize payments (under the condition that
no bidder pays more than her valuation). We call this VCG+.

Let us now formalize this idea. The sum of payments like the
VCG payments for the bundling at the node, but with the negative
term chosen so as to maximize the payments, is

max
α∈Aφ

∑
i∈N

∑
j 6=i

[vj(α
∗
−i)− vj(α)]

Here, α∗−i ∈ Aφ is the optimal allocation without bidder i, for the
bundling, φ, at the node. Aφ is the set of allocations consistent
with bundling φ. Also, α ∈ Aφ is any allocation that satisfies
the bundling at the node. We further tighten this upper bound by
making sure that no bidder is charged more than her valuation. This

3Unlike in typical tree (or graph) search in artificial intelligence,
here monotonicity does not imply admissibility because there is no
notion of the cost of the path from the root to the node.

max
n∑
i=1

pi (20)

pi ≤
∑
j∈Bi

vj · Ij ∀i ∈ N (21)

pi ≤
∑

j∈B−i

vj · I−ij −
∑

j∈B−i

vj · Ij ∀i ∈ N (22)

∑
j∈Bub

Ij ≤ 1 ∀b ∈ φp (23)

∑
j∈Bub

I−ij ≤ 1 ∀i ∈ N, b ∈ φp (24)

∑
j∈Bi

Ij ≤ 1 ∀i ∈ N (25)

∑
j∈Bk

I−ij ≤ 1 ∀i, k ∈ N (26)

Figure 3: Mixed integer program for VCG+. Here, Bub = {j ∈
B|Sj u b 6= ∅} is the set of all bids that are interested in some
bundle b.

gives us the formula for our upper-bounding technique VCG+:

max
α∈Aφ

∑
i∈N

min

∑
j 6=i

[vj(α
∗
−i)− vj(α)], vi(α)

 (19)

In the special case where α is the welfare-maximizing allocation
at the current node, this equals the revenue of running VCG at the
node.

The MIP in Figure 3 implements this idea. Constraints 21 and
22 ensure that each bidder pays her VCG+payment. Constraints 23
and 24 ensure that only one bidder can win each bundle in φp, the
bundling at the node. Constraints 25 and 26 ensure that each bidder
wins only one of his bids.

We now prove that VCG+ gives an upper bound to the revenue
found at any node in the subtree rooted at the current node.

PROPOSITION 6. VCG+ is admissible and monotonic.

PROOF. Consider an arbitrary current node p. We prove admis-
sibility first. VCG+ selects the best set of winning bids from all
legal allocations of winning bids for the bundling φp. For any de-
scendant d, we get a bundling φd such that if two items a, b ∈ M
are bundled together in φp then they are also bundled together in
φd. This means that any valid set of winning bids at d is also a valid
set of winning bids at p. In particular, the welfare-maximizing al-
location at d is a valid set of winning bids at p; call this allocation
αd. Since αd is a valid allocation for VCG+at p, we just need
to show that the payment that VCG+can obtain at p by selecting
this allocation is no smaller than rd =

∑n
i=1[W ∗,−iφd,B

−W ∗,−iφd,−i,B
],

the VCG revenue of φd. This is true because the negative term is
the same (since the allocations are the same), and for the positive
term W ∗,−iφd,B

, we have W ∗,−iφd
≤ W ∗,−iφp

since optimal welfare is
nonincreasing with more bundling.

Monotonicity follows from the fact that the VCG+ MIP for any
descendant of d of p is the VCG+ MIP for p with additional con-
straints added. Adding constraints cannot increase the value.

VCG+
LB We introduce a technique that tightens the bound of VCG+

based on the observation that any constraint that does not cut off
any of the welfare-maximizing allocations at any node in the sub-
tree will preserve the upper bound. With this in mind, we add the
constraint

∑
j∈B vj · Ij ≥ WLB to the MIP of Figure 3, where

WLB is a lower bound on the welfare found at any node in the
subtree.
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Distribution MIP V+L V+S V+ V-L W-L
Arbitrary 59 178 175 177 171 107
Regions 43 175 154 140 141 106

Paths 44 113 123 115 118 102
Matching 0 27 27 23 26 20

Scheduling 0 35 40 27 27 0
Total 146 528 519 482 483 335

Figure 4: Plots showing the number of instances solved for varying numbers of items with the MIP, and various heuristic configurations for
our branch-and-bound approach. The table shows the total number of instances solved for each algorithm and distribution pair.

At each search node, we use two different ways of computing a
value for WLB , and we use the larger of the two. The first is the
maximum valuation of any single bid, which is obviously a lower
bound since we can always let any single bid be the only winner.
The second is obtained by running DETERMINE-WINNERS on the
bids that do not use any of the yet-undecided items. This is clearly
a lower bound on the welfare of any node in that subtree because
the allocation that it finds remains feasible for all nodes the subtree.

PROPOSITION 7. VCG+
LB is admissible and monotonic.

PROOF. Admissibility follows immediately from the admissi-
bility of VCG+ and the fact that both ways of computing WLB

indeed yield lower bounds as argued in Section 5.3.
Monotonicity follows from monotonicity of VCG+ and the fact

that both ways of computing WLB yield WLB values that are non-
decreasing down each search path (because the set of bids to choose
from grows or stays the same).

5.4 Variable ordering
In Step 6, the function BRANCHINGITEM(node) chooses the item

to branch on at the node. Any choice will yield a correct algorithm,
but some choices lead to smaller trees than others and thus shorter
run times. The motivation for our variable-selection heuristic is
that we want to pick an item that most likely needs to be bundled
so that we get a fairly balanced search tree (where the promising
branches are the many branches where this item is bundled). In
contrast, branching on an item that likely should not be bundled
would render the one “unbundling" branch the most promising and
would thus yield lopsided deep trees.

We introduce two branching heuristics, PRICE-GAP-SIZE and
PRICE-GAP-LOG. They both work by first computing the highest
and second-highest “normalized bid price" for each item. Then,
the item that has the greatest difference between the highest and
second-highest normalized bid price is chosen for branching. The
idea is that such items are promising for bundling because there
is not enough competition on them. PRICE-GAP-SIZE In PRICE-
GAP-SIZE, we use the following formula for normalized bid price:
vj
|Sj |

. In PRICE-GAP-LOG, we use the following formula for nor-

malized bid price: vj
log(|Sj |)

.

Using the number of items in the bid, |Sj |, for normalization
gives a more precise estimate of the valuation of each item, but us-
ing the logarithm of |Sj | favors bids with a greater number of items,
which can lead to more important decisions being made early. Log-
arithmic normalization has been experimentally shown to perform
well in the winner determination problem [39] so we included that
in our experiments as well.

6. EXPERIMENTS
We conducted experiments with all our different algorithmic ap-

proaches using the Combinatorial Auction Test Suite (CATS) [26],
which is the leading combinatorial auction benchmark suite. We
generated a test suite from all the CATS distributions (excluding the
old, unrealistic “legacy" distributions): arbitrary, matching, paths,
regions, and scheduling. For each distribution we generated in-
stances with 4-15 items, and bids equal to 0.2, 0.5, 1, 2, 5, and 10
times the number of items, with 20 instances generated for each of
these settings. For space reasons we include only the most inter-
esting results here. All experiments were conducted on a cluster,
with each experiment run on a core on AMD Opteron quad-core
2.0GHz processors and 10GB of RAM available. The operating
system was Rocks Version 6.1. The MIP models were solved using
CPLEX 12.5. We used a time limit of 15 minutes for each run.

In this paper we present the most interesting results from our
experiments. For the interested reader, a full description and results
for all our experiments can be found in a companion tech report that
will be made available upon publication.

In addition to the techniques described above, we evaluated a
node-ordering technique we call LAZY-BOUND, where the nodes’
upper bounds are computed as the nodes are taken from the open
list. This had a negligible positive impact on performance, and
is discussed in the companion tech report. All algorithms pre-
sented here use the technique. We also designed and evaluated
an upper-bounding technique we call EXTERNALITY-FLOW. Its
performance was worse than that of VCG+ and VCG+

LB , its dis-
cussion is also relegated to the companion tech report.

Figure 4 shows five plots giving the number of instances solved
by our various algorithmic configurations. A plot is given for each
of the five CATS distribtutions. For each plot, the performance
of the MIP and five heuristic configurations for FIND-BUNDLING



are shown. The FIND-BUNDLING configurations are as follows:
VCG+

LB and PRICE-GAP-LOG(V+L), VCG+
LB and PRICE-GAP-

SIZE (V+S), VCG+
LB with no variable ordering heuristic (V+),

VCG+ and PRICE-GAP-LOG (V-L), and WELFARE and PRICE-
GAP-LOG (W-L). Finally, the table in Figure 4 shows the total
number of instances solved for each distribution and algorithm pair.

The presented results are for using instances where we generate
approximately ten times as many bids as there are items. The re-
sults are representative of algorithm performance for smaller num-
bers of bids, but these were hardest and thus best showed the perfor-
mance difference. In the following sections we discuss the results
in light of the various heuristics we developed.
MIP vs. our custom algorithm For the basic MIP approach, our
experiments show that it is unable to scale beyond 7 items for all of
the distributions (Figure 4). In contrast to this, our best algorithms
(V+L and V+S) solve instances with up to 15 items. We also see
that the total number of instances solved (table in Figure 4) by V+L
and V+S is far greater than for the MIP approach.
Upper bounding heuristics We conducted experiments with each
of the three upper-bounding techniques (WELFARE, VCG+, and
VCG+

LB). All three use PRICE-GAP-LOG for variable ordering.
On the arbitrary and regions distributions, we see that VCG+

LB

is able to solve at least 3 out of 20 instances for all item sizes, and
more than 10 for item sizes 11 and lower. On these distributions,
VCG+ performs almost as well, with only 7 fewer instances solved
overall on the arbitrary distribution and 34 fewer on the regions dis-
tribution. WELFARE performs significantly worse on these two dis-
tributions, solving approximately 70 instances less on each. For the
matching distribution, all algorithms have somewhat similar per-
formance, but the relative order of the upper-bounding heuristics
is the same. VCG+

LB solves 27 out of 40 instances, whereas the
MIP solves none. For the paths and scheduling distributions, all the
upper-bounding techniques perform significantly worse. VCG+

LB

and VCG+ only scale to 13 items, but still significantly outper-
form WELFARE, which scales to 11 items. Interestingly, the total
number of instances solved is slightly higher for V-L than for V+L.
Overall, VCG+

LB and VCG+ clearly outperform WELFARE by a
significant margin. VCG+

LB also outperforms VCG+ on 4 out of
5 distributions, 2 by a significant margin.
Variable-ordering heuristics We experimented with all three set-
tings for the variable ordering heuristic while using VCG+

LB for
upper bounding: PRICE-GAP-LOG (V+L) , PRICE-GAP-SIZE
(V+S), and no heuristic (V+). The performance on the arbitrary and
matching distributions is almost the same for all three heuristics,
with PRICE-GAP-LOG solving three more instances than PRICE-
GAP-SIZE. For the regions distribution, we see a more signif-
icant performance difference. PRICE-GAP-LOG solves 175 in-
stances, where PRICE-GAP-SIZE solves 154 instances, and us-
ing no heuristic solves 140. Finally, for the paths and schedul-
ing distributions, PRICE-GAP-SIZE performs somewhat better than
PRICE-GAP-LOG. On paths, it solves 123 instances while PRICE-
GAP-LOG solves 113. On scheduling, it solves 40 while PRICE-
GAP-LOG solves 35. Overall, PRICE-GAP-LOG solved 9 instances
more than PRICE-GAP-SIZE, both clearly outperforming not using
a variable-ordering heuristic. However, even PRICE-GAP-LOG is
outperformed by not using a variable-ordering heuristic on one dis-
tribution (although marginally).

6.1 Revenue increase and surplus extraction
Finally, we conducted experiments that empirically examine how

well our approach both bridges the gap to the optimal revenue, and
how much it improves over the VCG revenue. For low bids-to-
items multipliers, the revenue increase was very often infinitely

#items arbitrary regions paths matching scheduling
4 5.9 / 89 4.6 / 91 - / - - / - - / -
5 1.6 / 90 7.6 / 87 0.6 / 89 - / - - / -
6 4.4 / 90 0 / 82 1.7 / 86 - / - - / -
7 6.3 / 87 0.1 / 84 7.6 / 85 - / - - / -
8 9 / 88 1.6 / 84 2.2 / 87 3.4 / 84 - / -
9 2.6 / 92 4.7 / 91 3.9 / 88 - / - - / -

10 2.2 / 91 4.1 / 92 1.2 / 89 - / - 5.4 / 88
11 3.8 / 92 - / - 3 / 91 11 - / - 5.1 / 88
12 8.6 / 92 - / - - / - 8.4 / 89 3 / 86

Figure 5: The first column for each distribution shows the per-
centage increase in revenue from bundling compared to regular
VCG with no bundling. The second shows the percentage of so-
cial welflare extracted as revenue.

higher. This is because VCG often received no revenue in these
settings, whereas VCG with optimal bundling usually achieves at
leaft half the social welfare in revenue. These results are not shown
here as they are trivially stated.

Table 5 shows the results from running optimal bundling in the
VCG, VCG (with no bundling), and welfare computation on each
of the five CATS distributions, when the number of bids is 5 times
the number of items. The percentages given are average increases
over 10-20 instances for each parameter setting. Entries with - / -
denote that not enough instances were generated or solved.

For the bids-to-items ratio 5 (Figure 5), the revenue increase over
VCG tends to lie in the 2-20% range. About 90% of the social
welfare is obtained in revenue for these settings.

In real-life applications, the revenue increase is likely to be even
higher, as CATS tends to generate bids that span all items, with
valuation for such bids being close to the optimal welfare, and
thus causing artificially high compeition across all items. Similarly,
CATS only generates undominated bids, that is, bids whose value is
higher than what could be obtained in welfare from the items in the
bid using other bids that only want those items. This means that
CATS generates artificially strong competition, and thus revenue,
for the given number of bids and items.

7. CONCLUSION AND FUTURE WORK
We studied bundling, a common revenue-enhancement approach,

in the context of the most commonly studied combinatorial auction
mechanism, VCG, adopting a point prior model. We proved ro-
bustness to inaccuracy in the prior, and showed that computing the
optimal bundling is NP-hard even with a point prior. Then, we pre-
sented a custom branch-and-bound framework for finding the opti-
mal bundling. In that framework, we introduced several techniques
for branching, upper bounding, lower bounding, and lazy bound-
ing. Experiments on CATS distributions validated the approach and
showed that our techniques dramatically improve scalability over a
leading MIP solver.

There are many interesting directions for future research. Affine
maximizer auctions, virtual valuations combinatorial auctions, and
λ-auctions all support unlimited, bidder-specific reserve prices. In
contrast, we studied bundling alone as a revenue-enhancement tool.
There are many interesting questions about the relative power of
different forms of bundling, different forms of reserve pricing, and
combinations thereof— both in the auction and catalog sales con-
texts. Second, we plan to extend our algorithms to settings with
structure. For example, in many advertising markets, the inventory
segments are defined by vectors of attributes, and that can, in some
settings, provide additional structure.
Acknowledgements. This material is based on work supported by
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