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ABSTRACT
Extensive-form games are a powerful tool for modeling a
large range of multiagent scenarios. However, most solu-
tion algorithms require discrete, finite games. In contrast,
many real-world domains require modeling with continuous
action spaces. This is usually handled by heuristically dis-
cretizing the continuous action space without solution qual-
ity bounds. In this paper we address this issue. Leveraging
recent results on abstraction solution quality, we develop the
first framework for providing bounds on solution quality for
discretization of continuous action spaces in extensive-form
games. For games where the error is Lipschitz-continuous
in the distance of a continuous point to its nearest discrete
point, we show that a uniform discretization of the space is
optimal. When the error is monotonically increasing in dis-
tance to nearest discrete point, we develop an integer pro-
gram for finding the optimal discretization when the error
is described by piecewise linear functions. This result can
further be used to approximate optimal solutions to gen-
eral monotonic error functions. Finally we discuss how our
theory applies to several practical problems for which no
solution quality bounds could be derived before.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4.a [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Theory, Economics

Keywords
Extensive-form games, Nash equilibrium, equilibrium find-
ing, discretization, continuous action spaces

1. INTRODUCTION
Game-theoretic equilibrium concepts play an increasingly

important role in prescribing how agents should act in mul-
tiagent settings. The problem of computing Nash equilibria
and related concepts has received significant attention in
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the literature (e.g., [28, 27, 12, 18]). Extensive-form games
are an especially powerful class of games, that model many
sequential real-world domains, such as sequential auctions,
negotiation, security domains, cybersecurity, medical appli-
cations of game theory, and recreational games such as poker
and billiards [1, 34, 29, 8, 9, 35].

The computational literature has largely focused on games
where the action spaces are discrete at every node of the
game. Indeed, most algorithms for solving extensive-form
games require this (e.g. [39, 42, 25, 17, 32]). (One notable
exception to this was introduced by Johanson et al. [20],
where a technique was demonstrated for handling contin-
uous action spaces for nature in a fairly restricted sense.)
However, not all games encountered in practice are discrete.
Sources of continuity include noise (e.g. Gaussian) being
modeled by a nature node, bid sizes in auctions, betting
sizes in poker games, type profiles in mechanism design, and
power levels in jamming games.

In the past, such continuity has largely been handled by
heuristic discretization, with no theoretical guarantees on
solution quality. In contrast, we develop the first general
bounds on solution quality for discretizations of continuous
action spaces in a very broad class of games. Building on
recent results on abstraction in extensive-form games [23],
we show how to discretize continuous action spaces in a way
that gives theoretical bounds on solution quality when us-
ing any Nash equilibrium computed in the discretized game
to form a strategy in the full (continuous) game. This is
highly nontrivial because abstraction in games is pathologi-
cal unlike in single-agent settings such as MDPs: there are
cases where the (best) equilibrium strategy computed from a
fine-grained abstraction is worse (more exploitable) than the
(worst) equilibrium computed from a coarser abstraction,
when measured on the original unabstracted game [40]!

We then proceed to investigate the computation of dis-
cretizations that minimize an error bound. We first formu-
late the general problem, making only the assumption that
the error bound function is monotonic, which intuitively
requires that the error gets worse the farther a point gets
from the discrete point to which it maps. Since our problem
formulation consists of linear constraints, this immediately
leads to the conclusion that convex error functions can typ-
ically be minimized in polynomial time. We then go on to
consider error functions of the form derived in our theoreti-
cal solution-quality bounds. We show that when individual
leaf and nature node error functions are linear, and nature
always picks uniformly over continuous action intervals, the



bound-minimizing solution is to uniformly discretize each
continuous interval. We further show how to decompose the
problem and we develop a general framework for optimizing
the decomposed formulation for convex functions. We then
develop a mixed-integer program (MIP) for computing opti-
mal discretizations when only player action spaces are being
discretized and the error functions are piecewise linear.

Our paper is similar in spirit to two recent strands of re-
search in game solving. First is the bounded abstraction lit-
erature. Our bounds leverage recent results in game abstrac-
tion [23]. In addition to that work, solution-quality bounds
have also been obtained for imperfect-recall games. Lanctot
et al. [26] give solution-quality bounds for running the coun-
terfactual regret minimization algorithm on an imperfect-
recall abstraction of a perfect-recall game. Kroer and Sand-
holm [24] give solution-quality bounds on implementing Nash
equilibria computed from imperfect-recall abstractions in
the original perfect-recall game. Both sets of results al-
low only information abstraction, not action removal, and
thus cannot discretize continuous actions. Gilpin and Sand-
holm [12] give lossless abstraction results and algorithms.
These are for a specialized class of games called games of or-
dered signals, and apply only to finite-sized games. Similarly,
Basilico and Gatti [2] give bounds for another finite special-
ized class of games called Patrolling Security Games. There
have been several recent papers on evaluating the quality of
an abstraction after the fact—typically for games with dis-
crete action spaces [13, 19, 20, 21]. This is not feasible in
most continuous games, and also our goal is to devise good
abstractions up front rather than evaluating strategies com-
puted using abstraction after the fact. Sandholm and Singh
[36] give solution quality bounds for stochastic games. For
the special case of our results where the game is a stochastic
game, their results could also be applied, similarly to how
we apply the results of Kroer and Sandholm [23]. However,
the latter lead to stronger bounds.

Second is the literature on practical game abstraction,
which has focused on poker. This literature is less related
to our work, as our goal is to derive explicit general bounds,
rather than experimentally constructing abstractions that
work well for a particular game. The experimental game-
specific approach could, of course, potentially yield discretiza-
tions with better bounds because specific games can have ad-
ditional structure. Initially, game abstractions were created
by hand, using domain dependent knowledge [38, 4]. More
recently, automated abstraction has taken over [11, 12, 42].
This has typically been used for information abstraction,
whereas action abstraction is still largely done by hand [14,
37]. Recently, automated action abstraction approaches have
also started to emerge [15, 16, 6]. In addition to focusing on
theoretical solution quality bounds, our work also does not
distinguish between information and action abstraction, as
we consider both discretization of nature (information) and
player nodes.

2. EXTENSIVE-FORM GAMES
Extensive-form games provide a general framework for

modeling scenarios where agents make decisions sequentially
(or simultaneously), potentially with imperfect information
about the state of the game. Here we give a short for-
mal description. For a complete description see Osborne
and Rubinstein [31]. An extensive-form game is a tuple Γ =
〈N,A, S, Z,H, σ0, u, I〉. N is the set of players. A is the set

of all actions in the game. S is a set of nodes correspond-
ing to sequences of actions. They form a tree with root node
r ∈ S. At each node s, it is the turn of some Player P (s) who
gets to choose an action from action set As. Each branch at s
denotes a different choice in As. The set of all nodes where
Player i is active is denoted by Si = {s ∈ S : P (s) = i}.
Z ⊂ S is the set of leaf nodes, where ui(z) is the utility to
Player i of node z. We assume, without loss of generality,
that all utilities are non-negative. Zs is the subset of leaf
nodes reachable from node s. Hi ⊆ H is the set of heights in
the game tree where Player i acts. H0 is the set of heights
where nature acts. σ0 specifies the probability distribution
for nature, with σ0(s, a) denoting the probability of nature
choosing outcome a at node s.
Ii ⊆ I is the set of information sets where Player i acts.
Ii partitions Si. For any two nodes s1, s2 in the same infor-
mation set I, Player i cannot distinguish among them, and
As1 = As2 .

Perfect recall means that no player forgets anything that
that player observed. Formally, for every Player i ∈ N ,
information set I ∈ Ii, and nodes s1, s2 ∈ I, the sequence of
actions performed by Player i is the same for s1 and s2.

We denote by σi a behavioral strategy for Player i. For
each information set I where it is the player’s turn to move,
it assigns a probability distribution over the actions AI at
the information set. σi(I, a) is the probability of playing
action a. A strategy profile σ = (σ0, . . . , σn) consists of
a behavioral strategy for each player. We will often use
σ(I, a) to mean σi(I, a), since the information set uniquely
specifies which Player i is active. As described above, ran-
domness external to the players is captured by the nature
outcomes σ0. Using this notation allows us to treat na-
ture as a player when convenient. We let σI→a denote the
strategy profile obtained from σ by having Player i deviate
to taking action a at I ∈ Ii. The probability of reaching
node s is πσ(s) = Π{s,a}∈Xsσ(s̄, ā) where Xs is the set of
pairs of nodes and actions on the path from the root to s.
πσ(I) =

∑
s∈I π

σ(s) is the probability of reaching any node

in I. For probabilities over nature, πσ0 = πσ̄0 for all σ, σ̄,
so we can ignore the strategy profile superscript and write
π0. Finally, for all behavioral strategies, the subscript −i
refers to the same definition, but without Player i. Given a
strategy profile σ, we let ui(σ) =

∑
z∈Z π

σ(z)ui(z) denote
the expected utility of player i under σ. We let ui(σi, σ−i)
denote the same quantity, allowing us to swap the strategy
for player i.

We denote by tsa be the node transitioned to by performing
action a ∈ As at any node s.

2.1 Continuous action spaces
We will assume that we are dealing with a game Γ, where

one or more nodes s ∈ S have one or more continuous action
intervals As,c = [αs,c, βs,c] ⊆ As for c ∈ Cs, where Cs is an
index set of the continuous action spaces at s.

Let Sa be the set of nodes in the subtree reached by taking
action a ∈ As,c at node s. We assume there is a one-to-one
mapping φa,â = φâ,a between Sa and Sâ for any two actions
a, â ∈ As,c, where nodes at a given height map onto nodes
at the same height, and the condition of Definition 1 is sat-
isfied. Intuitively, the condition requires that nodes that are
mapped to each other are either (1) in the same information
set, or (2) their information sets contain no nodes from out-
side the (infinitely large) set of subtrees reachable by taking
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Figure 1: An example of a game tree with the triangle representing a subtree with a continuous action space at the node.

actions from As,c at s, and for any other node in the same in-
formation set and same subtree, the nodes mapped to must
similarly be in the same information set.

Definition 1. For any node ŝ ∈ Sa in the subtree at
a ∈ As,c, we require one of the two following conditions to
hold for all a′:

1. φa,a′(ŝ) ∈ Iŝ

2. Iŝ ⊂
⋃
ā∈[αs,c,βs,c] Sā, and for any other node s̄ ∈

Iŝ, s̄ ∈ Sa: φa,a′(s̄) ∈ Iφa,a′ (ŝ)

For each leaf node z ∈ Ztsa for some a ∈ As,c, we assume

that the payoff to Player i can be described as ui(z) = µiz(a),
where µiz = µiφa,â(z) for all â ∈ As,c. Intuitively, all leaf

nodes that map to each other have their payoffs described
by the same function, with the actual value depending on
the choice of a. Similarly, the probability of each outcome at
each nature node s′ in the subtree rooted at tsa is described
by a function ρs′(a) where ρs′ = ρφa,â(s′) for all â ∈ As,c.

Since we require a bijection mapping φa,â between the
subtrees for any two actions a, â ∈ [αs,c, βs,c] for each node
s with continuous action interval c, the infinitely many sub-
trees can equivalently be thought of as infinitely many in-
stantiations of a single game-tree prototype, where payoffs
and nature outcome probabilities are parameterized by the
choice of a ∈ [αs,c, βs,c], and the information set topology of
the instantiations satisfy Definition 1.

An example game is shown in Figure 1. On the left is
a game with three players: nature(N), Player 1 (P1), and
Player 2 (P2). Nature first chooses between L and R (with
some unspecified fixed probability distribution). If L is cho-
sen, a discrete subgame is reached. If R is chosen, P1 has
a continuous action space [α, β]. In the middle and right
are shown two specific subtrees under the continuous action
space, for P1 choosing actions a, b ∈ [α, β], respectively. The
information set that spans across the trees is an example of
one that satisfies Condition 1 of Definition 1, while the one
that does not span across the trees satisfies Condition 2.

So far we have described our notation in terms of discretiz-
ing a single continuous action space at some node. When
there is more than one node with a continuous action space
that is being discretized, we have to consider two groups of
nodes with continuous action spaces.

The first group is the set of all nodes s that have one or
more continuous action intervals, and s is the first node on
the path from the root to s with a continuous action space.
Let the set of all such nodes be S1 ⊆ S. These nodes are
handled exactly as described above. If there are additional
continuous action spaces in the subtree after taking some

action a ∈ As,c for some s, c, then the bijections between
subtrees simply map uncountably many nodes.

The second group is the set of all nodes s′ such that there
is at least one node-action pair s, a on the path from the
root to s′, where s has a continuous action space As,c such
that a ∈ As,c. Let this set of nodes be called S2 ⊂ S.
Let ~a ∈ Rn, where n is the number of continuous action
spaces leading to s′ and including the one at s′, such that
ai ∈ [αi, βi] where [αi, βi] is the continuous action space for
the i’th node with a continuous action space on the path to
s′. We then require that the payoff and nature functions are
functions of ~a rather than a single action choice. For fixed
choices in the past, the functions then behave exactly as the
functions for nodes in S1.

We fix some ordering of all continuous intervals, and define
A = ×s∈S1∪S2,c∈Cs

As,c to be the Cartesian product over all
continuous intervals. We will use j to denote indices into this
ordering I. We let [αj , βj ] denote the endpoints of interval
j ∈ I. From now on we will use ~a ∈ A to denote elements
of this set. A discretization is a finite set of points A′ ⊂ A.
The size |A′| = m is the number of discrete points chosen for
each interval. If fewer than m points are desired for some
interval As,c with index j ∈ I, we can simply let ~aj = ~a′j
for distinct points ~a,~a′ ∈ A′. For a node s, we will use
~as to refer to the subset of actions taken on the path to s
such that the action is part of a continuous action interval.
We will overload the notation of the payoff and nature error
functions so that for a given f or h for a node s, they take
elements ~a ∈ A as input, with the implicit understanding
that the value of the function depends only on ~as. We will
let π0(~a) denote the product of probabilities over each index
j into ~a such that nature acts at ~aj .

The game Γ′ = 〈N,A′, S′, Z′,H, σ0, u, I′〉 is the discrete
extensive-form game obtained by restricting players to se-
lecting actions that are part of the discretization A′.

2.2 Equilibrium notions
In this work, the kind of strategy profiles that we will focus

on are ones that constitute an (approximate) Nash equilib-
rium. A Nash equilibrium is a strategy profile σ such that
for each agent i and alternative strategy σ′i: ui(σi, σ−i) ≥
ui(σ

′
i, σ−i). An ε-Nash equilibrium is a strategy profile where

each agent can gain at most ε by deviating, as long as the
strategies of the other agents are kept fixed. Formally, for
each agent i and alternative strategy σ′i: ui(σi, σ−i) + ε ≥
ui(σ

′
i, σ−i). In a Nash equilibrium, ε = 0.

2.3 Discretization mapping and error terms
We will need to reason about the similarity of the full

game Γ and the induced game Γ′ for a given discretization
A′. To do this we will require a mapping of the continuous



action space onto the discretization:

Definition 2. A discretization mapping is a surjective
function g : A → A′ that maps the continuous action space
A onto the discretization A′. We require that g is decompos-
able, so for all ~a ∈ A, g(~a)j depends only on ~aj. GA′ denotes
the set of legal discretization maps for a given discretization
A′.

The discretization mapping along with the bijections φa,a′
for all s ∈ S, c ∈ Cs, a, a

′ ∈ As,c immediately defines a
mapping of the nodes S onto the nodes S′. Denote this node
mapping function by h : S → S′. For any node s ∈ S ∩ S′,
h(s) = s. For s ∈ S, s /∈ S′, h(s) is the node in S′ reached
by inductively applying the maps g and φ~asj ,g(~as)j at each

continuous action space on the path to s.
Due to the constraints in Definition 1, g also leads to an

information set mapping, as any two nodes s1, s2 ∈ I for
some I must map to the same information set: h(s1), h(s2) ∈
I ′ for some I ′. We let f : I → I′ be this information set
mapping.

For all three functions g, h, f we also define their inverses
g−1, h−1, f−1, that return all intervals Ā ⊆ A, nodes S̄ ⊂ S,
and information sets Ī ⊆ I, respectively, that map onto
given ~a ∈ A′, s′ ∈ S′, and I ′ ∈ I′, respectively. We denote
by h−1

I (s′) the intersection h−1(s′) ∩ I.
Given a discretization mapping g, it will be convenient

to define aggregate utility error terms for nodes of the real
game:

εRs,i =


maxa∈As ε

R
tsa,i

if s is a player node∫
a∈As

σ0(s, a)εRtsa,i if s is a nature node∣∣µis(~a)− µis(g(~a))
∣∣ if s is a leaf node

Similarly, we define aggregate error terms for nature error.
We define the nature distribution error of an information set
I and node s′ ∈ f(I) to be

ε0I,s′ =

∣∣∣∣∣
∫
s∈h−1

I
(s′) σ0(s)

σ0(I)
− σ′0(s′)

σ′0(f(I))

∣∣∣∣∣
This is the difference between nature’s probability of reach-
ing s′ and its probability of reaching any node in h−1

I (s′),
normalized by the probability of reaching the given informa-
tion sets. The nature error for information set I is

ε0I =
∑

s′∈f(I)

ε0I,s′

For a nature node s at height k ∈ H0 and s′ = h(s), we
define the nature action a′ ∈ As′ error and node error to
respectively be

ε0s,s′,a′ =

∣∣∣∣∣σ′0(s′, a′)−
∫
a∈g−1(a′)∩As

σ0(s, a)

∣∣∣∣∣
ε0s =

∑
a′∈As′

ε0s,s′,a′

The nature error at height k is

ε0k =

{∫
I∈Ik

π(I)ε0I if k /∈ H0∫
s∈Sk

π(s)ε0s if k ∈ H0

Finally, we let W̄ = maxi∈N,z∈Z ui(z) be the maximum pay-
off at any leaf node.

2.4 Strategy mapping
Once a Nash equilibrium has been computed in the dis-

cretized game, we need to define a way of converting that
strategy profile to a strategy profile for the full game. We
perform this mapping in the following simple way. Since
all subtrees under discretized intervals have the same shape
(based on how we defined the discretization problem in Sec-
tion 2.1) and thus same number of actions, we can simply
implement the same strategy that we computed for a given
discretized subtree at all subtrees that map to it. Specif-
ically, let σ′ be the strategy profile computed for the dis-
cretized game. Then for each real node s ∈ S, we set
σ(s, a) = σ′(h(s), a′), where a′ is the action at s′ that leads
to h(tsa). For continuous intervals, we simply pick each dis-
crete point a with the probability that it was chosen in the
discrete game, and every other action with probability zero.
This mapping yields a strategy profile that satisfies the fol-
lowing property, which we will use to derive bounds later:

Proposition 1. For a strategy profile σ′ computed in a
discretized game Γ′, our method of strategy conversion leads
to a strategy profile σ for the full game Γ so that for any
information set pair I, I ′ such that I maps onto I ′, σ−0(I) >
0, and σi(I) > 0,∣∣∣∣∣∣∣

σ(s′)

σ(I ′)
−

∑
s∈g−1

I
(s′)

σ(s)

σ(I)

∣∣∣∣∣∣∣ ≤ ε0I,s′
Proof. This follows immediately from how we defined

the mapping.

3. OVERVIEW OF OUR APPROACH
Given some game with continuous action spaces, the goal

in this paper is to pick a finite set of points for each con-
tinuous action interval. This will induce a finite extensive-
form game. A (potentially approximate) Nash equilibrium
is then computed in the discrete game. The computed Nash
equilibrium is then mapped to a strategy profile in the full
(continuous) game. Figure 2 illustrates the approach.

Under reasonable assumptions, we will derive solution qual-
ity bounds for any Nash equilibrium computed in the ab-
straction when implemented in the full game. More specif-
ically, we will show that such strategy profiles constitute
ε-Nash equilibria in the full game, where the ε depends on
the error terms we defined in the previous section. These re-
sults are anlogous to the solution-quality results for discrete
games [23, 24].

4. DISCRETIZATION QUALITY BOUNDS
We start by showing an error bound on solution qual-

ity for any given discretization and discretization mapping,
leveraging a recent result of Kroer and Sandholm [23].

Theorem 2. For any game Γ with continuous action spaces
A that satisfy the constraint given in Definition 1, discretiza-
tion A′ ⊂ A, and discretization mapping g : A → A′, any
Nash equilibrium σ computed in Γ′ constitutes an ε-Nash
equilibrium when implemented in Γ, where

ε = max
i

{
2εRs,i +

∑
k∈Hi

ε0kW
}

+ 2
∑
k∈H0

ε0kW



Figure 2: An overview of our discretization approach.

Proof. We can view the game Γ′ obtained by this dis-
cretization as an abstraction, where g defines a mapping of
each real action a to some abstract action a′. Coupled with
the bijection φa,a′ , this induces a node mapping h and in-
formation set mapping f , as argued in Section 2.3.

Theorem 4.2 of Kroer and Sandholm [23] gives error bound
results for abstractions like this. To see that f indeed forms
a surjective function that respects h, consider Conditions 1
and 2 of Definition 1, which ensure that any discretization
induces an information set mapping. First consider when
Condition 1 is satisfied. In this case the information set
mapping is obviously respected, as the nodes that map to
each other were already in the same information set.

Now consider any information set I such that a node s ∈ I
is mapped onto another node ŝ ∈ Î , Î 6= I. Condition 2 en-
sures that this only happens for information sets completely
contained in the subtrees rooted at the continuous interval
in question. We have to show that I is surjectively mapped
onto Î. Condition 2 states that for any other node s̄ ∈ I,
s̄ must map to a node in the same information set as ŝ.
Thus we just have to verify that every node s∗ ∈ Î has a
node from I mapped onto it. This is immediately seen by
applying Definition 1 to the bijection from the perspective
if Î, as the bijection has to be the same when applying the
definition in both directions.

Theorem 4.2 of Kroer and Sandholm [23] also requires that
the strategy implemented in the full game is an undivided
lifted strategy. We did not quite guarantee this property with
our strategy mapping described in Section 2.4. However,
this property is only used in the very last step of the proof
of Theorem 4.2 in their paper, where they use it to apply
Proposition 3.1 of their paper. Instead, we can apply our
Proposition 1, which achieves the same effect.

The result as presented by Kroer and Sandholm [23] takes
the maximum nature outcome error for each height. Their
proof is easily modified to take the expected value, ε0k, in-
stead, as we do in the theorem. (This approach was also
taken by Kroer and Sandholm [24].)

The bounds as given here are in their most general form.
In particular, the two nature error terms

∑
k∈Hi

ε0kW and

2
∑
k∈H0

ε0kW are not given in terms of the functions ρs that

describe the change in nature outcome probabilities. ε0k can
easily be bounded for all k in Hi and H0 respectively:

ε0k ≤
∫
I∈Ik

π(I)
∑

s′∈f(I)

∣∣∣∣∣
∫
s∈h−1

I
(s′)

π0(~as)− π0(~as
′
)

∣∣∣∣∣ = ξ0
k

ε0k ≤
∫
s∈Sk

π(s)
∑

a′∈As′

∣∣∣∣∣
∫
a∈g−1

I
(a′)

σ0(s, a)− σ0(s′, a′)

∣∣∣∣∣ = ξ0
k

This gives the following corollary:

Corollary 3. For any game Γ with continuous action
spaces A that satisfy the constraint given in Definition 1,
discretization A′ ⊂ A, and discretization mapping g : A →
A′, any Nash equilibrium σ computed in Γ′ constitutes an
ε-Nash equilibrium when implemented in Γ, where

ε = max
i

{
2εRs,i +

∑
k∈Hi

ξ0
kW
}

+ 2
∑
k∈H0

ξ0
kW

The ξ0
k terms do not diverge. While an infinite sum is

taken in both cases, the terms are probability weighted, and∫
I∈Ik

π(I) = 1,
∫
s∈Sk

π(s) = 1. Since we are dealing with

probability distributions, we can take the maximum over Ik
or Sk. In practical settings, it may be desireable to take
several maxima. First, in the current form of both Theo-
rem 2 and Corollary 3, the bound depends on the strategy
profile of the players, not just nature. To make the bound
independent of player actions, one can take the maximum
over player actions. Second, instead of computing the infi-
nite sum of errors over Ik or Sk, it may be useful to take the
probability-weighted sum of errors over discrete points, and
then compute the maximum error over each discrete point.

5. DISCRETIZATION ALGORITHMS
In this section we consider general bounded discretization

problems that are largely independent of the specific error
bound to be minimized. This means that our algorithms
will apply to the results from Section 4, and also to any
(potentially stronger or more general) bounds obtained in
the future, as long as they fall under the setting described
in Section 5.1.

5.1 The optimization problem
We consider a more general class of problems than those

described in Section 2.1. We consider a game Γ where one
or more s ∈ S has a continuous action space. We again let
A be the set of all intervals to be discretized with index set
I and let ~alj refer to the kj discrete points chosen for interval
j. We assume the points in the discretization are ordered,
so ~alj < ~al+1

j for all j ∈ I, l ∈ [kj ].
We start by formulating the optimization problem very

generally. We assume that we have an error bounding func-
tion Ψ : Ak × GA → R that takes as input a discretization
A′ and discretization map g and returns a real-valued er-
ror bound Ψ(A′, g). We make two innocuous assumptions
about Ψ to represent the natural condition that the error in-
creases the further an actual point is from the discrete point
to which it maps.

First, each point maps to its nearest lower or upper dis-
crete point. Formally, for all j ∈ I, and any point al,
~alj < al < ~al+1

j not in the discretization, Ψ is minimized

at g(al) = ~alj or g(al) = ~al+1
j .

Second, for all j ∈ I, and any two points al, âl, ~a
l
j < al <

âl < ~al+1
j not in the discretization, if Ψ is minimized when

g(âl) = ~alj then Ψ is minimized when g(al) = ~alj , and if Ψ

is minimized when g(al) = ~al+1
j then Ψ is minimized when

g(âl) = ~al+1
j .



We will say that an error function Ψ that satisfies our
two assumptions is monotonic. Given a monotonic Ψ and a
discretizationA′, the optimal mapping for each interval j ∈ I
can be determined by finding the splitting point between
each interval

[
~alj ,~a

l+1
j

]
such that the left side of the splitting

point is mapped onto ~alj and right side is mapped onto ~al+1
j .

For each interval j ∈ I, we introduce real-valued variables
~alj ∈ Aj , l ∈ [kj ] and gτs,c, τ ∈ [kj − 1], where kj is the
desired number of discrete points for interval Aj . The vari-
ables ~alj represent the discrete points, while gτj represents

the point between ~aτj and ~aτ+1
j that separates the interval,

such that the points in the interval
[
~aτj , g

τ
j

]
map onto ~aτj and

the points in the interval
[
gτj ,~a

τ+1
j

]
map onto ~aτ+1

j . Since

any set of values for ~alj , g
τ
j over all j ∈ I, l ∈ [kj ] , τ ∈ [kj − 1]

completely specifies a discretization and discretization map-
ping, we let A′v, gv denote the discretization and mapping
obtained by a solution. The feasible set of this problem is

F =

A
′
v, gv :

~alj ≤ ~al+1
j ∀j ∈ I, l ∈ [kj − 1]

~aτj ≤ gτj ≤ ~aτ+1
j ∀j ∈ I, τ ∈ [kj − 1]

~alj ∈ Aj ∀j ∈ I, l ∈ [kj ]

gτj ∈ Aj ∀j ∈ I, τ ∈ [kj − 1]

 (1)

With this notation, we arrive at the most generic form
of the optimal discretization problem for monotonic error
functions:

min
{

Ψ(A′v, gv) :
(
A′v, gv

)
∈ F

}
(2)

Setting k = 1, one can see that this is equivalent to min-
imizing any function, so this general form will not get us
far. Fortunately, there is often further structure in practical
games. In the rest of the algorithms section, we will consider
various forms of structure that enable us to design efficient
algorithms for finding good discretizations.

5.1.1 Convex error function
The constraints specified in (1) are all linear. Thus, if Ψ

is convex, solving (2) becomes a convex minimization prob-
lem over linear constraints. These are solvable in polyno-
mial time under mild assumptions [3]1. Perhaps more im-
portantly, large subsets of this class of error functions have
practically efficient solution methods—e.g., an error func-
tion that is conic-quadratic or semi-definite representable
(Ben-Tal and Nemirovski [3] give a thorough discussion of
such representability 1), smooth, or non-smooth with certain
structure [30].

5.2 Decomposable error function
In Section 4, we considered error functions that are a mix-

ture of maximums (player nodes) and probability-weighted
sums (nature nodes) of the error functions at individual
nodes. We now consider how to (recursively) represent such
error functions using linear inequalities, for the purpose of
computation.

Let ξj : Aj × gj → R be an error function that gives the
error incurred at interval j ∈ I when choosing discretization
A′j and mapping gj at Aj . Recursively taking the maximum
or weighted sum can be implemented by recursively applying

1 A heavily and continuously updated version of this book
is at http://www2.isye.gatech.edu/~nemirovs/.

the following linear inequalities, where variable eδ represents
the error at a given node or information set δ:

E =


es ≥

∑
a∈As

σ0(s, a)etsa

es ≥max
a∈As

etsa

es ≥ξj

 (3)

The same linear formulation can also be used to formulate
the error bound in the case where ξs : A × g are functions
that give the error for each leaf and nature node. In a slight
abuse of notation, we denote the set of error function solu-
tions described in (3) by E .

If each error function ξj depends only on the subset of A
that consists of interval j and any descendant intervals, the
discretization problem can be decomposed: find each inter-
val j ∈ I that is the first continuous interval from the root
to the interval. Each such interval, along with its subtrees
and any intervals therein, can be minimized separately.

5.3 Minimizing our bound
We will now study the game class that satisfies Defini-

tion 1 and minimization of the bound given in Corollary 3.
We will consider various types of error functions.

5.3.1 Linear error functions
In this section we consider games Γ where the utility

and nature outcome distribution functions µz, ρs, at all z ∈
Z, s ∈ S that are descendants of a continuous interval, are
Lipschitz continuous with Lipschitz constant Lz/s. This en-
compasses two important practical classes of game: (1) all
the functions µ and ρ are linear, and (2) the functions are
non-linear but the bound being derived is based on knowing
(only) that the functions are Lipschitz continuous.

If all continuous intervals at nature nodes have a uniform
distribution, we get the following simple results: all intervals
should be discretized into uniform interval sizes.

Theorem 4. For a game Γ with continuous action spaces
A, where each utility and nature outcome distribution func-
tion is Lipschitz continuous with constant Lz/s for each leaf
z or nature node s, and all continuous nature intervals are
uniformly distributed, the bound-minimizing kj-point discre-
tization at each interval A′j is:

~alj = αj +

(
l − 1

2

)
·
(
βj − αj
kj

)
∀l ∈ [kj ]

gτj = αj + τ ·
(
βj − αj
kj

)
∀τ ∈ [kj − 1]

We will call this a uniform discretization.

Proof. Consider such a discretization and mapping. We
will show that any other discretization or mapping can not
be better. For an interval j ∈ I at a player node, this is easily
seen. The error of the interval is the maximum error over
the interval. Since all functions are linear, this is simply the
point a ∈ Aj with the largest distance to its discrete point.
For a uniform discretization, this is either endpoint αj , βj or

some inner point gτj , which all have distance
βj−αj

2kj
. For any

other discretization, some point must have distance strictly
greater than this to its discrete point, thus worsening the
bound.

http://www2.isye.gatech.edu/~nemirovs/


For an interval j ∈ I at some nature node s, we first ob-
serve that the error function is convex. The error at each leaf
or nature node in the subtrees is linear (and thus convex).
The error at each other node is the finite sum or maximum
over descendant errors. The error over the interval is the
integral over error at each subtree. Since taking finite sums,
maxima, and integrals all preserve convexity (see Boyd and
Vandenberghe [5] for a calculus of convex functions), we get
that the error over the interval is convex. For convex func-
tions, local minimizers are global minimizers. Thus, it is
sufficient to show that the derivative is zero at the uniform
discretization. Since the subtrees have the same structure,
by the conditions given in Definition 1, and the fact that the
error functions depends only on the distance, we get that the
error between any two points a1, a2 ∈ Aj can be represented
by some function ∆(|a1 − a2|). Using this representation, we
consider the error of each interval

[
~alj , g

l
j

]
:∫ glj

~alj

1

βj − αj
∆
(∣∣∣~alj − t∣∣∣)dt

=
1

βj − αj

∫ glj−~a
l
j

0

∆ (t) dt (4)

Using exactly the same approach, we can also get the error
of the interval

[
glj ,~a

l+1
j

]
:

1

βj − αj

∫ ~al+1
j −glj

0

∆ (t) dt (5)

We see that for any subgradient x of (4), −x is a subgradient
of (5). Using additivity of subdifferentials (see Rockafellar
[33] chapter 23), we get that 0 is a subgradient of glj . We

can apply exactly the same approach to each ~alj to see that
0 is a subgradient there as well.

When the conditions of the above theorem do not hold,
the decomposition results from Section 5.2 and the recursive
linearization (3) still apply. In the following two subsections,
we leverage this fact.

5.3.2 Convex error functions
As we pointed out above, taking the maximum, sum, and

integral all preserve convexity. Thus, if the error∣∣µz(a)− µz(a′)
∣∣ or

∣∣ρs(a)− ρ(a′)
∣∣

at each leaf or nature node can be represented by a convex
function, the linear constraints in (3) can be used to repre-
sent the overall error as a convex function. As discussed in
Section 5.1.1, this would, depending on the specific struc-
ture, allow the application of various efficient polynomial-
time methods. We do not give specific algorithms here, but
merely point out that optimal solutions can be found in
polynomial time. In practice, the specific choice of which
polynomial-time algorithm to apply should be informed by
the exact structure of the error functions of the given game.

5.3.3 Piecewise linear error functions
We now consider piecewise linear utility error functions

and piecewise linear nature probability error functions for
discretizing continuous player action intervals. We do not
consider discretizing nature actions here because even with
linear functions and a uniform nature distribution, discretiz-
ing nature intervals would lead to quadratic error, as shown

in the proof of Theorem 4. Even if the actual error functions
are not piecewise linear, this can be used for arbitrarily ac-
curate approximation.

Finding a bound-minimizing discretization, subject to a
limit on the number of discretization points, is NP-hard.
This is easily seen by considering the NP-hardness proof by
Kroer and Sandholm [23], and representing their discrete
game-abstraction problem using a step function.

However, it can be represented by a MIP, where the num-
ber of binary variables is equal to the number of pieces
summed over all functions. This number can be significantly
decreased if the interval pieces over the different functions
µ, ρ under some interval j ∈ I align. We use the same vari-
able formulation ~alj , g

l
j as defined in (1), and the feasible set

F remains the same. Consider an interval j ∈ I and the set
of points where some function in the subtrees at j changes
piece. This set of points divides the interval [αj , βj ] into
pieces. Let Pj be an index set into these pieces. The size of
Pj is clearly bounded by the sum of pieces in functions in

subtrees at j. We introduce a Boolean variable bγ,lj , cγ,τj for
each γ ∈ Pj , l ∈ [kj ], and τ ∈ [kj − 1], representing whether
~alj , g

τ
j fall into the interval representing piece γ ∈ Pj , respec-

tively. When bγ,lj (cγ,τj ) = 1, we restrict ~alj(g
τ
j ) as follows:

αγj · b
γ,l
j ≤ ~a

l
j , ~alj ≤ βγj + (βj − βγj ) · bγ,lj

The sum
∑
γ∈Pj b

γ,l
j = 1 ensures that only one interval is

chosen. The constraints for cγ,τj , gτj are completely analo-
gous. For each leaf node z with piecewise payoff function
µγz , and l ∈ [kj ], we can then introduce price variables
plz, p

l
z(~a

l
j), p

l
z(g

l
j) ∈ R, with the latter two for the interval[

~alj , g
l
j

]
, and constrain them linearly as follows:

P =


plz ≥plz(glj)− plz(~alj)

plz(g
l
j) ≥µγz (glj)−M · cγ,τj ∀γ ∈ Pj

plz(~a
l
j) ≤µγz (~alj) +M · bγ,lj ∀γ ∈ Pj

 (6)

This is correct for sufficiently large M ∈ R. We now have
variables plz representing each error function for the discrete
points, and can apply the linear constraints from (3) to get
a linear representation of the overall error. Thus we get the
following MIP, where er is the objective value at the root
according to (3):

min
{
er : er ∈ E ,

(
A′v, gv

)
∈ F ∩ P, bγ,lj , cγ,τj ∈ {0, 1}

}
(7)

6. APPLICATIONS
In this section, we discuss some applications of our results.

We will focus on three recent problems that have included
continuity in their problem formulation, or discretized away
continuity: robust policy optimization under parameter un-
certainty [8], security games [41, 22, 29], and sequential wifi-
jamming under battery constraints [9].

Chen and Bowling [8] propose the use of zero-sum extensive-
form game solving as a way of tractably computing opti-
mally robust policies for Markov Decision Processes (MDPs)
with parameter uncertainty. They design robustness criteria
that can be implemented via nature first sampling parame-
ter instances, and an opponent then choosing the worst of
these. This sampling by nature was necessary in order to get
games where the action space for the players is finite. Now,
with our discretization-quality results, it is possible to use a



broader class of robustness measures that allow continuous
action spaces, while obtaining solution quality bounds.

Several papers have investigated continuous settings for
security games. These have been for single-shot [22, 41] or
repeated Bayesian Stackelberg games [29]. Since our frame-
work is for the more general setting of extensive-form games,
our solution-quality bounds apply to all these settings. Fur-
thermore, they would also apply to more sophisticated mod-
els that include both sequential actions and imperfect in-
formation. Marecki et al. [29] mention as future work the
setting where the follower also behaves strategically. Our
results immediately yield solution quality bounds for dis-
cretizations for this setting.

Another area with continuity is wifi jamming. In recent
work, sequential-interaction models were introduced for this
domain [9]. These models employ discretized action spaces,
where both the jammer and transmitter have a (small) finite
set of possible power levels to transmit at. However, this is
an abstraction of reality, where software-defined radios mean
that action spaces can be continuous (at least up to the bit-
precision of the hardware). Using the techniques developed
in this paper, we can give solution quality bounds on the
utility loss obtained from considering only a discrete number
of possible power levels (possibly by padding the game tree
with dummy actions to satisfy Definition 1). DeBruhl et
al. [9] also mention that in a more realistic model, both
transmitter and jammer would be modeled as observing only
noisy signals of the actions taken by the other player. Since
these observations would be of a continuum, the noise would
likewise be continuous. The discretization quality bounds
derived here would immediately apply to this setting.

7. DIFFERENCES TO ABSTRACTION
PRACTICE IN POKER

We have already discussed how our framework can be
used to give theoretical bounds on solution quality in prac-
tical scenarios. In particular, we showed that a uniform
discretization is optimal for linear error functions (for dis-
cretizing nature this required a uniform distribution over the
continuous action space). This stands somewhat in contrast
to how practical abstractions are created for poker.

Consider no-limit Texas hold’em (NLHE). This game is
the premier testbed for (discrete) extensive-form game solv-
ing algorithms [34]. Each year, the Annual Computer Poker
Competition is held, where research groups submit highly-
tuned poker-playing programs. The winning programs are
based on computing Nash equilibrium approximations in ab-
stractions of the full extensive-form game [34].

In NLHE, at each betting step, the acting player may bet
any amount from the minimum bet to their entire stack of
chips. To handle this action space, the top agents devise
betting abstractions. These are completely analogous to the
discretizations considered in this paper. The payoff func-
tions under the subtrees are all linear in the specific actions
chosen. At a cursory glance, one might say that Theorem 4
suggests that the optimal discretization would be uniform.
However, the discretizations employed by the poker bots are
more akin to a geometric progression. For example, Brown
et al. [7] describe using a betting abstraction consisting of
0.5, 0.75, 1, 1.5, 2 and 5 times the pot size, as well as the all-
in action. At the start of betting, all-in is approximately
133 times the pot size. Both examples and experiments by

Ganzfried and Sandholm [10] support the idea that the uni-
form mapping is not optimal.

A potential explanation for this is that the subtrees reached
for different choices of bet size technically do not fall under
the constraints of Definition 1. Consider a group of bets, say
raising in the range of [1, 2] (here we consider continuous bets
in this small continuous range due to ease of exposition, one
can construct similar examples with larger integer ranges)
with a stack size of 2.5. The subtree where the player bets
2 exists as a subset of the subtree at every other betsize.
These subsets all map to each other in a way that obeys
Definition 1. However, if the player bets 1 instead, the op-
ponent may reraise by 1, in which case the agent can call.
This scenario does not exist when betting 2, as the player
already bet her entire stack. For any two bet sizes a1 < a2,
these discrepancies due to extra actions exist. To resolve this
issue, one could pad the tree with extra actions such that
Definition 1 is satisfied, but it is unclear how this would in-
teract with the solution-quality bound, and could thus lead
to nonoptimality of the uniform discretization.

8. CONCLUSIONS
We analyzed the problem of developing solution-quality

bounds for discretization of extensive-form games with con-
tinuous action spaces. To our knowledge, we developed the
first such bounds. We developed bounds for a very general
class of continuous games: ones where there is a finite set
of prototype trees, such that the instantiation of a given
prototype has its nature probability outcomes and utilities
parameterized by the choice on the continuous intervals. We
developed bounds both where they depend on the specific
Nash equilibrium (Theorem 2) and where they are indepen-
dent of the Nash equilibrium chosen (Corollary 3).

We then considered the problem of computing bound-
minimizing discretizations. First we developed very general
bound-minimization formulations that allow a broad class of
error-bounding functions. We discussed how such functions
can be minimized in polynomial time when they are con-
vex. We then considered the more specific problem of min-
imizing our bound developed for Corollary 3. For the case
where all utility error and nature probability error functions
are Lipschitz continuous (without additional structure), and
nature chooses uniformly over each continuous interval, we
showed that the bound-minimizing solution is to discretize
uniformly. For the case where the error functions at individ-
ual nodes can be represented by convex functions, we showed
how to generate a convex optimization formulation of the
overall problem. We also developed a MIP for piecewise lin-
ear error functions, which can also be used for arbitrarily
accurate approximation. We also showed how the problem
can be decomposed into separately optimizable components.

Ganzfried and Sandholm [10] dicuss randomized mappings,
where each real point has a probability distribution over
which of its nearest discrete points it maps to. Their experi-
ments strongly suggest that such randomization is desirable.
Incorporating randomized mappings in our work could po-
tentially lead to better discretizations, almost certainly in
practice, and potentially also in theory. We leave this as
future research.
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