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We study the problem of computing a Nash equilibrium in large-scale two-player zero-sum extensive-form
games. While this problem can be solved in polynomial time, first-order or regret-based methods are usually
preferred for large games. Regret-based methods have largely been favored in practice, in spite of their
theoretically inferior convergence rates. In this paper we investigate the acceleration of first-order methods
both theoretically and experimentally. An important component of many first-order methods is a distance-
generating function. Motivated by this, we investigate a specific distance-generating function, namely the
dilated entropy function, over treeplexes, which are convex polytopes that encompass the strategy spaces
of perfect-recall extensive-form games. We develop significantly stronger bounds on the associated strong
convexity parameter. In terms of extensive-form game solving, this improves the convergence rate of several
first-order methods by a factor of O( #information sets·depth·M

2depth ) where M is the maximum value of the `1 norm
over the treeplex encoding the strategy spaces.

Experimentally, we investigate the performance of three first-order methods (the excessive gap technique,
mirror prox, and stochastic mirror prox) and compare their performance to the regret-based algorithms. In
order to instantiate stochastic mirror prox, we develop a class of gradient sampling schemes for game trees.
Equipped with our distance-generating function and sampling scheme, we find that mirror prox and the
excessive gap technique outperform the prior regret-based methods for finding medium accuracy solutions.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
J.4.a [Social and Behavioral Sciences]: Economics

General Terms: Algorithms, Economics, Theory
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1. INTRODUCTION
Extensive-form games (EFGs) model sequential interaction, imperfect information,
and outcome uncertainty; and are thus one of the broadest classes of game models.
Nash equilibria prescribe a particular notion of rational behavior in such games. For
the specific case of two-player zero-sum EFGs with perfect recall, an exact Nash equi-
librium can be computed in polynomial time using a Linear Program (LP). But the
size of the resulting LP is linear in the size of the game tree [von Stengel 1996]; and
for very-large scale games, it is prohibitively expensive [Sandholm 2010] to solve it
exactly. This has motivated the design of iterative algorithms that converge to a Nash
equilibrium in the limit. Such algorithms are mainly categorized as first-order meth-
ods (FOMs) [Hoda et al. 2010] and regret-based [Zinkevich et al. 2007] approaches.
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The current state-of-the-art for practical game solving is a regret-based stochastic al-
gorithm [Lanctot et al. 2009], with an O( 1

ε2 ) convergence rate. Hoda et al. [2010] have
studied first-order methods (FOMs) with an O( 1

ε ) rate of convergence. While such ap-
proaches have more desireable theoretical guarantees, they have yet to become the
norm in practice. This paper investigates the acceleration of such methods, both from
a theoretical and an experimental perspective.

Our approach is motivated by the fact that many FOMs work with a distance-
generating function (d.g.f.), a measure of distance over the search space, which is re-
quired to be strongly convex. Moreover, the convergence rate of such FOMs usually
depends on the ratio of the diameter of the search space measured by the d.g.f., scaled
by the strong convexity parameter of the same function. Thus, good lower bounds on
this strong convexity parameter are desirable. On the theoretical side, we investigate
a class of distance-generating functions, namely the dilated entropy function over the
class of treeplexes, a convex polytope that generalizes the strategy spaces of the players
in perfect-recall EFGs. Hoda et al. [2010] developed a generic scheme for constructing
such functions for EFGs based on standard d.g.f.s used for the simplex domain. How-
ever, the generic scheme from Hoda et al. [2010] leads to very weak strong convexity
parameters, resulting in slow convergence rates. In this paper, we specifically analyze
the dilated entropy function as a d.g.f. and establish its best known strong convex-
ity lower bound over treeplexes. Our result, in particular, improves this bound on the
strong convexity parameter to the square root of the prior bound, thereby resulting in
an improvement in the convergence rate of the same order for many FOMs such as
Nesterov’s excessive gap technique (EGT) [Nesterov 2005] which was applied to EFG
solving by Hoda et al. [2010], as well as for any other algorithm based on d.g.f.s over
treeplexes. Moreover, such an improvement of the strong convexity parameter is es-
pecially critical for stochastic FOMs, where it is not possible to speed up the search
through line search techniques.

The top poker bots at the Annual Computer Poker Competition are created with the
monte-carlo counterfactual regret minimization (MCCFR) algorithm [Lanctot et al.
2009], which is a sampling variant of the counterfactual regret minimization algorithm
(CFR) [Zinkevich et al. 2007; Brown et al. 2015]. Inspired by this success, we also
describe a family of sampling schemes that lead to unbiased gradient estimators for
EFGs, and suggest their use in a stochastic FOM.

Finally, we perform a preliminary experimental investigation of the speed up of
FOMs with convergence rate O( 1

ε ). Specifically, using our theoretical results, we in-
stantiate the mirror prox (MP) [Nemirovski 2004], stochastic mirror prox (SMP) [Ju-
ditsky et al. 2011], and EGT [Nesterov 2005] algorithms to EFG solving. We also com-
pare the performance of these algorithms with the premier regret-based methods CFR
and MCCFR.

2. RELATED WORK
Nash equilibrium computation is a topic that has received much attention in the lit-
erature [Littman and Stone 2003; Lipton et al. 2003; Gilpin and Sandholm 2007;
Zinkevich et al. 2007; Jiang and Leyton-Brown 2011; Kroer and Sandholm 2014a;
Daskalakis et al. 2014]. The specific equilibrium-finding problems further vary quite a
bit. Here we restrict our attention to two-player zero-sum sequential games.

Koller et al. [1996] present an LP whose size is linear in the size of the game tree.
This approach, coupled with lossless abstraction techniques, was used to solve Rhode-
Island hold’em [Shi and Littman 2002; Gilpin and Sandholm 2007], a game with 3.1
billion nodes (roughly size 5 · 107 after lossless abstraction). However, for games larger
than this, the resuting LPs tend not to fit in the computer memory, thus requiring



approximate techniques. These techniques fall into two categories: iterative ε-Nash
equilibrium-finding algorithms, and abstraction techniques [Sandholm 2010].

The most popular iterative Nash equilibrium algorithm is undoubtedly the counter-
factual regret minimization (CFR) algorithm [Zinkevich et al. 2007] and its sampling-
based variant monte-carlo CFR (MCCFR) [Lanctot et al. 2009]. Both of these regret-
minimization algorithms perform local regret-based updates at each information set.
Despite their slow convergence rate of O( 1

ε2 ), they perform very well in pratice, likely
owing to their very cheap iterations. As a stochastic algorithm MCCFR touches only
the sampled part of the game tree. Also, as experimentally shown by Lanctot et al.
[2009], even CFR can prune large parts of the game tree due to actions with probabil-
ity zero. Recently, Waugh and Bagnell [2015] showed that CFR can be interpreted as a
FOM withO( 1

ε2 ) rate. Nonetheless, in this paper we make a distinction between regret-
based methods and O( 1

e ) FOMs for ease of exposition. Hoda et al. [2010] has suggested
the only other FOM, a customization of EGT with a convergence rate of O( 1

ε ), that
scales to solve large games. Gilpin et al. [2012] give an algorithm with convergence
rate O(ln( 1

ε )). But their bound has a dependence on a certain condition number of the
sequence-form payoff matrix, which is difficult to estimate, and as a result they show
a O( 1

ε ) bound in the worst case. Finally, Bosansky et al. [2014] develop an iterative
double-oracle algorithm for exact equilibrium computation. However, this algorithm
only scales for games where it can identify an equilibrium of small support, and thus
suffers from the same performance issues as the general LP approach for large EFGs.

In addition to equilibrium-finding algorithms, another central topic in large-scale
game solving has been automated abstraction [Sandholm 2010]. Initially, this was used
mostly for information abstraction [Gilpin and Sandholm 2007; Shi and Littman 2002;
Zinkevich et al. 2007]. Lately, action abstraction approaches have gained considerable
interest [Hawkin et al. 2011, 2012; Brown and Sandholm 2014; Kroer and Sandholm
2014a,b]. Sequential game abstraction approaches with solution quality bounds have
also emerged for stochastic [Sandholm and Singh 2012] and extensive-form [Lanctot
et al. 2012; Kroer and Sandholm 2014a,b] games more recently.

2.1. Sequence form
It is well-known [Romanovskii 1962; Koller et al. 1996; von Stengel 1996] that the
strategy space of each player can be formulated in a way that leads to the following
bilinear saddle-point formulation of the Nash equilibrium problem:

min
x∈X

max
y∈Y
〈x,Ay〉 = max

y∈Y
min
x∈X
〈x,Ay〉. (1)

In this formulation, X ,Y are convex polyhedral reformulations of the sequential strat-
egy space of players 1 and 2 respectively. Let x, y be non-negative strategy vectors for
players 1 and 2. Then X ,Y are defined by the constraints Ex = e, Fy = f , where e, f
are |I1| , |I2|-dimensional vectors of the form [1, 0 . . . , ], and Ii is the number of informa-
tion sets for player i. Likewise, E,F have as many rows, with each row encoding part
of the sequential nature of the strategy vectors. For a complete treatment of this for-
mulation, see von Stengel [1996]. Next, we develop our theoretical results for a more
general class of convex polytopes that contain the sequence form strategy space as a
special case.

3. OPTIMIZATION SETUP
Given a Bilinear Saddle Point Problem (BSPP), we first describe our general setup, in-
dependent of EFGs because our theoretical results apply to any optimization problem
over treeplexes. We follow the presentation and notation of Juditsky and Nemirovski
[2011a,b].



Throughout this paper, we use Matlab notation to denote vector and matrices, i.e.,
[x; y] denotes the concatenation of two column vectors x, y.

In its most general form a BSPP is defined as

max
y∈Y

min
x∈X

φ(x, y), (S)

where φ(x, y) = υ+ 〈a1, x〉+ 〈a2, y〉+ 〈y,Ax〉, where X ,Y are nonempty convex compact
sets in Euclidean spaces Ex, Ey and Z := X × Y, so φ(x, y) : Z → R. For EFG solving,
φ(x, y) is simply the inner product given in (1).

Note that (S) gives rise to two convex optimization problems that are dual to each
other:

Opt(P ) = minx∈X [φ(x) := maxy∈Y φ(x, y)] (P )
Opt(D) = maxy∈Y [φ(y) := minx∈X φ(x, y)] (D)

with Opt(P ) = Opt(D) = Opt. It is well known that the solutions to (S) — the saddle
points of φ on X × Y — are exactly the pairs z = [x; y] comprised of optimal solutions
to problems (P ) and (D). The accuracy of a candidate solution z = [x; y] is quantified
by the saddle point residual

εsad(z) = φ(x)− φ(y) =
[
φ(x)−Opt(P )

]︸ ︷︷ ︸
≥0

+
[
Opt(D)− φ(y)

]︸ ︷︷ ︸
≥0

.

In an EFG, εsad(z) is proximity to being an ε-Nash equilibrium.
The problems (P ) and (D) also give rise to the variational inequality: find z∗ ∈ Z s.t.

〈F (z), z − z∗〉 ≥ 0 for all z ∈ Z, (2)

where F : Z 7→ Ex × Ey is the affine monotone operator defined by

F (x, y) =

[
Fx(y) =

∂φ(x, y)

∂x
;Fy(x) = −∂φ(x, y)

∂y

]
.

For EFG-solving purposes, F (x, y) corresponds to the map returning the gradients
[Ay,−ATx] from (1). Then (2) states that for any other strategy pair z = [x, y],
z∗ = [x∗, y∗] are best responses.

3.1. General framework for FOMs
Most FOMs capable of solving BSPP (S) are quite flexible in terms of adjusting to
the geometry of the problem characterized by the domain X ,Y of the BSPP (S). The
following components are standard in forming the setup for such FOMs:

· Norm: ‖ · ‖ on the Euclidean space E where the domain Z = X ×Y of (S) lives, along
with the dual norm ‖ζ‖∗ = max

‖z‖≤1
〈ζ, z〉.

· Distance-Generating Function (d.g.f.): A function ω(z) : Z → R, which is convex and
continuous on Z, and admits a continuous selection of subgradients ω′(z) on the set
Zo = {z ∈ Z : ∂ω(z) 6= ∅} (here ∂ω(z) is a subdifferential of ω taken at z), and is
strongly convex with modulus 1 w.r.t. ‖ · ‖:

∀z′, z′′ ∈ Zo : 〈ω′(z′)− ω′(z′′), z′ − z′′〉 ≥ ‖z′ − z′′‖2. (3)

· Bregman distance: Vz(u) = ω(u)− ω(z)− 〈ω′(z), u− z〉, where z ∈ Zo and u ∈ Z.
· Prox-mapping: Given a prox center z ∈ Zo,

Proxz(ξ) = argmin
w∈Z

{〈ξ, w〉+ Vz(w)} : E → Zo.



Given a properly chosen stepsize, the prox-mapping becomes a contraction, which
is critical in the convergence analysis of FOMs. Furthermore, when the squared `2
norm is used as a d.g.f., the prox mapping becomes the usual projection operation of
the vector z − ξ onto Z.

· ω-center: zω = argmin
z∈Z

ω(z) ∈ Zo of Z.

· Set width: Ω = Ωz := max
z∈Z

Vzω (z) ≤ max
z∈Z

ω(z)−min
z∈Z

ω(z).

· Lipschitz constant: L of F from ‖·‖ to ‖·‖∗, satisfying ‖F (z)−F (z′)‖∗ ≤ L‖z−z′‖,∀z, z′.
The standard customization of a FOM for BSPP (S) is based on associating a norm

‖ · ‖x and a d.g.f. ωx(·) with domain X , and similarly ‖ · ‖y, ωy(·) with domain Y. Then,
given two scalars αx, αy > 0, we build the d.g.f. and ω-center, zω, for Z = X × Y as:

ω(z) = αxωx(x) + αyωy(y) and zω = [xωx
; yωy

],

where ωx(·) and ωy(·) as well as xωx
and yωy

are customized based on the geometry of
the domains X ,Y. Then by letting ξ = [ξx; ξy], z = [x; y], the prox mapping becomes
decomposable as

Proxz(ξ) =

[
Proxωx

x

(
ξx
αx

)
; Proxωy

y

(
ξy
αy

)]
,

where Proxωx
x (·) and Proxωy

y (·) are respectively prox mappings w.r.t. ωx(x) in domain X
and ωy(y) in domain Y.

Based on this setup, the Mirror Prox (MP) algorithm is given in Algorithm 1.

ALGORITHM 1: Mirror Prox
input : ω-center zω, step size {γt} and ε
output: zt(= [xt; yt])

1 t = 1; z1 := zω;
2 while εsad(z

t) > ε do
3 vt = Proxzt(γtF (zt));
4 zt+1 = Proxzt(γtF (vt));
5 zt =

[∑t
s=1 γs

]−1∑t
s=1 γsvs;

6 t = t+ 1;

Suppose the step sizes in the MP algorithm satisfy γt = L−1. Then, at every iteration
t ≥ 1, the corresponding solution zt = [xt; yt] satisfies xt ∈ X , yt ∈ Y, and we have
O(1)ΩL

ε convergence rate [Nemirovski 2004]. Specifically:

φ(xt)− φ(yt) = εsad(zt) ≤ ΩL
t
.

The EGT algorithm [Nesterov 2005] can be set up using the same framework, to
achieve a convergence rate of O(1)ΩL

ε .

3.2. Stochastic FOMs
In practice, each iteration of an FOM might be prohibitively expensive, usually be-
cause the prox function, gradient, or both, are expensive to compute. In such a case, a
stochastic FOM based on sampling-based is often advantageous. Juditsky et al. [2011]
discuss a stochastic variant of MP for BSSP, namely Stochastic MP (SMP). Algorithm 1
is modified as follows. Steps 3 and 4 do not use the exact gradients, but rather unbi-
ased estimators thereof. Specifically, for every u ∈ X , we assume access to a probability



distribution Πu such that Eξ∼Πu [ξ] = u. Similarly, we assume access to Pv for v ∈ Y
such that Eη∼Pv [η] = v. We define variance as follows:

σ2
x = sup

u∈X
E
{
‖A [ξu − u] ‖2y,∗

}
, σ2

y = sup
v∈Y

E
{
‖AT [ηv − v] ‖2x,∗

}
Juditsky et al. [2011] prove that after T iterations of SMP with stepsizes γt =

min
[

1√
3L ,
√

4Ω
7T (σ2

x+σ2
y)

]
, the solution satisfies:

E
[
εsad(z

T )
]
≤ max

[
7ΩL
2T

, 7

√
2Ω(σ2

x + σ2
y)

3T

]
. (4)

4. TREEPLEXES
Hoda et al. [2010] introduce the treeplex, a class of convex polytopes that encompass
the sequence-form description of strategy spaces in perfect-recall sequential games:

Definition 4.1. Treeplexes are described recursively:

(1) Basic sets: The standard simplex ∆m = {x ∈ [0, 1]
m

:
∑m
k=1 xk = 1} is a treeplex.

(2) Cartesian product: If Q1, . . . , Qk are treeplexes, then Q1 × · · · ×Qk is a treeplex.
(3) Branching: If P ⊆ [0, 1]

p and Q = {Q1, . . . , Qk}, where Qj ⊆ [0, 1]
qj are treeplexes

and l = {l1, . . . , lk} ⊆ {1, . . . , p}, then

P l Q :=
{

(x, y1, . . . , yk) ∈ Rp+
∑

j qj : x ∈ P, y1 ∈ xl1 ·Q1, . . . , yk ∈ xlk ·Qk
}

is a treeplex and xlj are the branching variables for Qj .

A treeplex is a tree of simplices, where children are connected to parents through
the branching operation, which scales the child simplex by the value of the parent
branching variable. This intuition is important because the proof of our main result
relies on induction over these simplices. For EFGs, the simplices correspond to the
information sets of a single player and the whole treeplex represents that player’s
strategy space. The branching operation has a sequential interpretation: The vector
x represents the decision variables at some stage, while the vectors yj represent the
decision variables at the k potential following stages, depending on external outcomes.
Here k ≤ p, as some variables in x may not have subsequent decisions. As pointed out
by von Stengel [1996], the treeplex can be represented by the linear equations Ex = e
for a matrix E with entries in {−1, 0, 1} and a vector e with entries in {0, 1}.

For a treeplex Q, we denote by SQ the index set of the set of simplices contained in
Q (in an EFG SQ is the set of information sets belonging to the player). For each vector
q ∈ Q and simplex ∆j we let Ij denote the set of indices of q that index to variables from
∆j , and qj denote the subset of q referring to variables in Ij . For each simplex ∆j and
branch i ∈ Ij we let Dij denote the set of indices of simplices reached immediately after
∆j by taking branch i (in an EFG Dij is the set of potential next-step information sets
for the player). For a vector q ∈ Q, simplex ∆j , index i ∈ Ij , and each child simplex ∆k

where k ∈ Dij , ∆k is scaled by qi. Conversely, for a given simplex ∆j we let pj denote
the index in q of the parent branching variable qpj that ∆j is scaled by. We use the
convention that xpj = 1 if Q is such that no branching operation precedes ∆j . For each
j ∈ SQ, dj is the maximum depth of the treeplex rooted at ∆j , that is, the maximum
number of simplices reachable through a series of branching operations at ∆j .

An example treeplex is given in Figure 1. Let us denote this treeplex by Q. Q is con-
structed from eight two-to-three-dimensional simplices ∆1, . . . ,∆8. The two simplices



∆1,∆2 are both at depth 1 through a Cartesian product operation, denoted by ×. We
have maximum depths d1 = 2,= d2 = 1 beneath them. Since there are no preceding
branching operations their parent variables are constants equal to 1, i.e., qp1 = qp2 = 1.
For ∆1, the corresponding set of indices in the q vector is I1 = {1, 2}, while for ∆2 it is
I2 = {3, 4}. At depth 2 we have the simplices ∆3, . . . ,∆6, each of which is scaled by the
parent variable qpj that the branching operation was performed on. For example, ∆3

is scaled by qp3 = q1.

∆1

q2 ·∆4

q7 q8

q1 ·∆3

q6 ·∆8

q16 q17

q6 ·∆7

q13
q14

q15

q5 q6

q1 q2

∆2

q4 ·∆6

q11 q12

q3 ·∆5

q9 q10

q3 q4

×

×

Fig. 1: An example treeplex constructed from 8 simplices. Cartesian product operation
is denoted by ×.

Because we allow more than two-way branches, our formulation of a treeplex differs
from that of Hoda et al. [2010]. It is possible to model the sequence-form using only
two-way branches. Yet, this can in general cause a large increase in the depth of the
treeplex, thus leading to significant degradation in the strong convexity parameter.
Our generalization of multi-way branches allows us to better take into account the
structure of the sequence-form game, thereby deriving better strong convexity results.

5. DILATED ENTROPY FUNCTION WITH BOUNDED STRONG CONVEXITY
Our goal is to construct d.g.f.s that are strongly convex with respect to the `1 norm on
any treeplex Q, c.f. (3). Our analysis is based on the following alternative characteri-
zation of strongly convex twice differentiable functions:

FACT 5.1. A twice-differentiable function f is strongly convex with modulus ϕ with
respect to a norm ‖·‖ on nonempty convex set C ⊂ Rn if hT∇2f(z)h ≥ ϕ‖h‖, ∀h ∈ Rn, z ∈
C where ∇2f(z) is the Hessian of f at z.

The basic building block in our construction is the well-known entropy d.g.f. for the
simplex ∆n, which is given by ωE(z) = −∑n

i=1 zi log(zi). It is well-known that this
function is strongly convex with modulus 1 with respect to the `1 norm on ∆n. We
will show that a suitable modification of this function achieves a desireable strong
convexity parameter for treeplex domains.

Our analysis also requires a measure of the size of a treeplex Q. Thus, we define

MQ := max
q∈Q
‖q‖1. (5)

For EFGs, MQ is the maximum number of information sets that can have nonzero
probability of being reached when the player whose strategy space is encoded by Q has
to choose a pure strategy, while the other player can choose a mixed strategy.



The treeplex structure is naturally related to the dilation operation [Hiriart-Urruty
and Lemaréchal 2001] defined as follows: First, given a compact set K ⊆ Rd and a
function f : K → R, we define the set K̄ ⊆ Rd+1 as

K̄ :=
{

(t, z) ∈ Rd+1 : t ∈ [0, 1] , z ∈ t ·K
}
.

Definition 5.2. Given a function f(z), the dilation operation is the function f̄ : K̄ →
R given by

f̄(z, t) =

{
t · f(z/t) if t > 0

0 if t = 0
.

Based on this dilation operation, we define the following dilated entropy function
over the simplices of a treeplex:

Definition 5.3 (Dilated entropy function). Given a treeplex Q and the weights βj for
each j ∈ SQ, we let

ω(q) =
∑
j∈SQ

βj
∑
i∈Ij

qi log
qi
qpj

for any q ∈ Q,

where pj is the index of the branching variable preceding ∆j , with the convention that
qpj = 1 if ∆j has no branching operation preceding it.

This class of d.g.f.s is a small subset of the d.g.f.s considered by Hoda et al. [2010].
Nevertheless, by focusing on the dilated entropy function and the `1 norm, we establish
much better strong convexity bounds. Our main theoretical result is:

THEOREM 5.4. For any treeplex Q, the dilated entropy function with weights βj =
2djMQj is strongly convex modulus 1

|SQ| with respect to the `1 norm.

The proof of Theorem 5.4 is given in Section 5.2.
This is, to our knowledge, the first strong convexity bounds for general treeplexes.

Hoda et al. [2010] have proven strong convexity of this scheme, under weaker assump-
tions on the norm. But their analysis is for only the degradation associated with a
single two-way branching step and fails to provide explicit strong convexity parame-
ters. For the special case of uniform treeplexes (a significant restriction on the treeplex
construction), Hoda et al. [2010] do give explicit bounds. Nevertheless, in Section 5.3
we show that their bounds are significantly inferior to ours even for this special case.

Theorem 5.4 implies that for any treeplex Q, the dilated entropy function with
weights βj = SQ2djMQj is strongly convex with modulus 1 with respect to the `1 norm.
Note that ω(·) defined in Theorem 5.4 is twice differentiable in the interior of treeplex
Q and admits a continuous gradient selection. Thus, the dilated entropy function is
compatible with the `1 norm, as required by the MP setup.

5.1. Preliminaries for the proof of Theorem 5.4
We start with some simple facts and a few technical lemmas that will streamline the
proof of Theorem 5.4.

FACT 5.5. For any q in the relative interior ∆0
n of the n-dimensional simplex ∆n and

any h ∈ Rn, the Cauchy-Schwarz inequality implies
n∑
i=1

h2
i

qi
=

 n∑
j=1

qj


︸ ︷︷ ︸

=1

(
n∑
i=1

h2
i

qi

)
≥
(

n∑
i=1

|hi|√
qi

√
qi

)2

= ‖h‖21.



FACT 5.6. For any a, b ∈ R and index set J over variables aj we have

(i) a2 + b2 ≥ 2ab, and thus
∑
j∈J

∑
i6=j a

2
i ≥

∑
j∈J

∑
i 6=j aiaj .

(ii) 2 (a− b)2
+ 2b2 ≥ (a− b)2

+ b2 + 2b (a− b) = ((a− b) + b)
2

= a2.

LEMMA 5.7. Given a treeplex Q, for all j ∈ SQ:

MQj = 1 + max
i∈Ij

∑
l∈Di

j

MQl
,

MQj
≥ 1 +

∑
l∈Di

j

MQl
∀i ∈ Ij .

PROOF. The equality follows from the definition ofMQj
and the fact that ∆j is a sim-

plex. The inequality follows by every i ∈ Ij being lower bounded by the maximum.

LEMMA 5.8. For any q in the relative interior of a treeplex Q and for all j ∈ SQ:∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+

2h2
pj

qpj
≥ 1

2

∑
i∈Ij

h2
i

qi
. (6)

PROOF. Consider a treeplex Q and j ∈ SQ. Then for ∆j of dimension nj , qj is taken
from the scaled simplex ∆nj

· qpj . Hence, the vector q̄j = 1
qpj
qj is from ∆nj

and

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+

2h2
pj

qpj
=
∑
i∈Ij

[
1

qpj

(
h2
i

q̄i
− 2hihpj + q̄ih

2
pj

)
+
q̄ih

2
pj

qpj

]

=
∑
i∈Ij

[
1

qpj

(
hi√
q̄i
−√q̄ihpj

)2

+
q̄ih

2
pj

qpj

]
≥
∑
i∈Ij

[
1

qpj

h2
i

2q̄i

]
=

1

2

∑
i∈Ij

h2
i

qi
,

where the first equality follows from rearranging the terms in the summation by mov-
ing qpj outside, the second equality from completing the square, and the inequality
from Fact 5.6 (ii) with a = hi√

q̄i
, b =

√
q̄ihpj .

5.2. Proof of Theorem 5.4
We are now ready to prove Theorem 5.4.

PROOF. Given a treeplex Q, for any q ∈ Q0 and for any h, we will first prove

hT∇ω2(q)h ≥
∑
j∈SQ

‖hj‖21, (7)

from which the strong convexity of ω(·) w.r.t. `1 norm on Q will follow. For each j ∈
SQ, i ∈ Ij the second-order partial derivates of ω(·) w.r.t. qi are:

ω′′q2i
(q) =

βj
qi

+
∑
k∈Di

j

∑
l∈Ik

βkql
q2
i

=
βj
qi

+
∑
k∈Di

j

βk
qi
, (8)



where the last equality holds because qk ∈ ∆k · qi. For each j ∈ SQ, i ∈ Ij , k ∈ Dij , and
l ∈ Ik we also need the second-order partial derivates w.r.t qi, ql:

ω′′qi,ql(q) = ω′′ql,qi(q) = −βk
qi
. (9)

Equations (8) and (9) together imply

hT∇2ω(q)h =
∑
j∈SQ

∑
i∈Ij

h2
i

βj
qi

+
∑
k∈Di

j

βk
qi

− ∑
k∈Di

j

∑
l∈Ik

hihl
2βk
qi

 (10)

=
∑
j∈Q

∑
i∈Ij

βj

[(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

]
, (11)

where the last equality is obtained by shifting the last two terms on the right-hand
side of (10) to be counted at the child indices in the sum

∑
j∈SQ

. So h2
i
βk

qi
becomes

βk
h2
p
j′

qp
j′

, and hihl
2βk

qi
becomes βk

2hihp
j′

qp
j′

, where j′ is the index of the child simplex. For

∆j at depth 1, there is no preceding branching operation, so technically the variables
hpj , qpj do not exist. We circumvent this with the convention hpj = 0, qpj = 1 for such j.

We are now ready to prove equation (7) by induction. Starting from the value of the
quadratic at the root, 2dMQ

∑
i∈IQ

h2
i

qi
, we show that the multipliers 2dMQ are large

enough to “push down” 2d−1MQj

h2
i

qi
to each descendant simplex of the branching oper-

ation at ∆j . Our inductive assumption for depth k is:

∑
j∈SQ,dj≤k

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj


≥

∑
j∈SQ,dj≤k

‖hj‖21 +
∑

j∈SQ,dj=k

2d−k−1(MQj
− 1)

∑
i∈Ij

h2
i

qi

 .
Base case: let k = 1. Since this is the first set of branching operations, hpj = 0, so

∑
j∈SQ,dj=1

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

 =
∑

j∈SQ,dj=1

2dMQj

∑
i∈Ij

h2
i

qi

 (12)

≥
∑

j∈SQ,dj=1

2d
(
MQj

− 1
)∑
i∈Ij

h2
i

qi
+ 2d‖hj‖21

 , (13)

where the last inequality follows from Fact 5.5.



Inductive step: Given our inductive assumption for depth k, we show that it then
holds for k + 1. From the inductive assumption, we get

∑
j∈SQ,dj≤k+1

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj


≥

∑
j∈SQ,dj≤k

‖hj‖21 +
∑

j∈SQ,dj=k

2d−k−1(MQj
− 1)

∑
i∈Ij

h2
i

qi


+

∑
j∈SQ,dj=k+1

2d−k−1MQj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

 . (14)

By Lemma 5.7, MQj
≥ 1 +

∑
l∈Di

j
MQl

, so
(
MQj

− 1
)∑

i∈Ij
h2
i

qi
≥∑i∈Ij

∑
l∈Di

j
MQl

h2
pj

qpj
.

By counting the sum over j ∈ SQ, dj = k in the RHS of (14) at the children we get

≥
∑

j∈SQ,dj≤k

‖hj‖21 +
∑

j∈SQ,dj=k+1

2d−k−1MQj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+

2h2
pj

qpj

 . (15)

Then, using Lemma 5.8 in (15) gives

≥
∑

j∈SQ,dj≤k

‖hj‖21 +
∑

j∈SQ,dj=k+1

2d−k−2MQj

∑
i∈Ij

h2
i

qi

≥
∑

j∈SQ,dj≤k+1

‖hj‖21 +
∑

j∈SQ,dj=k+1

2d−k−2(MQj
− 1)

∑
i∈Ij

h2
i

qi
,

where the last inequality is obtained by applying the same trick that we used to go from
(12) to (13). This concludes the inductive step, and establishes (7) because MQj

≥ 1 for
all j ∈ SQ and all other terms are nonnegative.

Then, by bounding the right-hand side of (7), we get

hT∇2ω(q)h ≥
∑
j∈SQ

‖hj‖21 =
∑
j∈SQ

 1

|SQ|
‖hj‖21 +

∑
i 6=j

1

|SQ|
‖hj‖21


≥
∑
j∈SQ

 1

|SQ|
‖hj‖21 +

1

|SQ|
∑
i6=j

‖hj‖1‖hi‖1

 =
1

|SQ|
‖h‖21, (16)

where the last inequality follows by applying Fact 5.6 (i) to each pair ‖hi‖21, ‖hj‖21.
Since the dilated entropy function is twice differentiable in the relative interior of

Q, using Fact 5.1, strong convexity with modulus ϕ is equivalent to

hT∇2ω(q)h ≥ ϕ‖h‖21 (17)

for all q ∈ Q0, h ∈ Rn. Applying this to (16) with ϕ = 1
|SQ| proves the theorem.

5.3. Bounding the set width of treeplexes
As described in Section 3.1, MP, and other FOMs, rely on the set width as measured
by the d.g.f.. In particular, their rate of convergences rely on the ratio of the two: the
strong convexity parameter can be made smaller or larger by scaling the d.g.f., but this



leads to increases or decreases in the set width. Thus, WLOG we can assume that the
strong convexity modulus is 1.

Theorem 5.4 shows that the dilated entropy function with weights βj = |SQ| 2djMQj

for each j ∈ SQ when used as d.g.f. over a treeplex has a strong convexity modulus
ϕ ≥ 1 w.r.t. the `1 norm. We now investigate the set width over a treeplex when this
d.g.f. is used.

THEOREM 5.9. For a treeplex Q and weights βj = |SQ| 2djMQj
for each j ∈ SQ, the

maximum distance Ω between any two points in the treeplex as measured by the dilated
entropy function is bounded by

Ω

ϕ
≤ Ω ≤ |SQ| d 2dMQ log(m),

where d is the depth of Q and m is the maximum dimension of any ∆j for j ∈ SQ.

PROOF. The inequality Ω
ϕ ≤ Ω follows from Theorem 5.4 since we scale by an addi-

tional |SQ| compared to the weights used there. Now we bound Ω for any q ∈ Q. Note
that the maximum value maxq∈Q ω(q) = 0 because we can choose a vector q where a
single variable has value 1 for each simplex ∆j such that qpj > 0.

For minq∈Q ω(q), first note that the entropy d.g.f. ωE satisfies maxz∈∆n
ωE(z) ≤ log(n),

and the dimension of each ∆j can be bounded above by some m. Thus, we have∑
j∈SQ

βj
∑
i∈Ij

qi log
qi
qpj

=
∑
j∈SQ

βjqpj
∑
i∈Ij

qi
qpj

log
qi
qpj
≥ −

∑
j∈SQ

βjqpj log(m).

Now consider any depth d′. By Lemma 5.7, we have

−
∑
j∈SQ

βjqpj log(m) = −
∑

j∈SQ,dj=d′

qpj |SQ| 2d−d
′
MQj

log(m)

≥ −
∑

j∈SQ,dj=d′

qpj |SQ| 2d−d
′
(MQ − d) log(m) ≥ −

∑
j∈SQ,dj=d′

qpj |SQ| 2dMQ log(m). (18)

Summing up (18) over all depths gives

min
q∈Q

ω(q) ≥ − |SQ| d 2dMQ log(m).

Now we plug in our values for the maximum and minimum to get

Ω ≤ max
q∈Q

ω(q)−min
q∈Q

ω(q) ≤ 0−
(
− |SQ| d 2dMQ log(m)

)
= |SQ| d 2dMQ log(m),

which completes the proof.

The ratio Ω
ϕ of maximum distance over the strong convexity parameter is important

for FOMs that rely on a prox function, such as Nesterov’s EGT, MP, and SMP. As
mentioned previously, Hoda et al. [2010] only proved explicit bounds for the special
case of uniform treeplexes. We next compare our bound for the general case to their
bound for this specific case of uniform treeplexes.

Intuitively, uniform treeplexes start from a base treeplex, and construct a uniform
treeplex by having each level have the same branching factor, and for every level,
the subtrees rooted at those levels have the exact same structure, while branching is
performed only on the base treeplex. Given bounds Ωb, ϕb for the base treeplex, Hoda
et al. [2010] achieve a bound of

Ω

ϕ
≤ O

(
|SQ|2 d2M2

Q

Ωb
ϕb

)



for the overall treeplex. For the special case where the base treeplex is a simplex of
dimension m, their bound for the dilated entropy function becomes

Ω

ϕ
≤ O

(
|SQ|2 d2M2

Q log(m)
)
.

Comparing Theorem 5.9 to their bound we see that our bound for the general class
trades a factor of O(|SQ| d MQ) for a factor O(2d). In many games, either of the terms
|SQ| and MQ would individually be much larger than 2d.

5.4. Mirror prox algorithm for extensive-form game solving
We now describe how to instantiate MP for solving two-player zero-sum EFGs of the
form given in (1) when X ,Y are treeplexes. This requires us to instantiate all the
definitions from Section 3 for our problem. Because X and Y are treeplexes, it is im-
mediately apparent that they are closed, convex, and bounded. We use the `1 norm on
both of the embedding spaces Ex, Ey.

We use the dilated entropy function scaled with weights given in Theorem 5.9 as our
d.g.f. for Z = X × Y that is compatible with the `1 norm. Then, Theorem 5.9 gives our
bound on Ωz. Because the dual norm of `1 norm is the `∞ norm, an upper bound on the
Lipschitz constant of our monotone operator, namely L, is given by:

L = max {L1,L2} ,where

L1 = max
y∈Y

∣∣∣∣max
j

(Ay)j −min
j

(Ay)ij

∣∣∣∣ ,L2 = max
x∈X

∣∣∣max
i

(ATx)i −min
i

(ATx)i

∣∣∣ .
Note that L is not at the scale of the maximum payoff difference in the original game.

The differences involved in L1,L2 are scaled by the probability of the observed nature
outcomes on the path of each sequence. Thus our Lipschitz constant L is exponen-
tially smaller (in the number of observed nature steps on the path to the maximizing
sequence) than the maximum payoff difference in the original EFG.

With our setup the convergence rate of MP with the dilated entropy function for
solving BSPPs over treeplex domains (and EFG solving) is

O

( |SZ | d 2dMZLmaxj∈SZ log(|Ij |)
T

)
.

This rate immediately improves the constants involved in many state-of-the-art
FOMs with O(1/ε) convergence rate for EFGs. In particular, the convergence rate of
the EGT algorithm is improved by the same amount by applying our d.g.f. and theo-
retical result. For SMP we further need unbiased gradient estimators.

6. SAMPLING
We now introduce a broad class of unbiased gradient estimators for EFGs. We describe
how to generate a gradient estimate η of xTA given x ∈ X , that is, the gradient for
player 2. Given y ∈ Y, the estimate ξ of AT y is generated analogously. This class ex-
plicitly uses the tree structure representation of EFGs, so we introduce some notation
for it. We define H to be the set of nodes (or equivalently, histories) in the game tree.
For any node h, we define A(h) to be the set of actions available at h. The node reached
by taking action a ∈ A(h) at h is denoted by h[a]. We let ph,x to be the probability distri-
bution over actions A(h) given by the current iterate x. If h is a chance node, x has no
effect on the distribution. We let u2(h) be the utility of player 2 for reaching a terminal
node h, and ηh be the index in η corresponding to a given terminal node h.



An EFG gradient estimator is defined by a sampling-description function C : H →
N ∪ {all}, where C(h) gives the number of samples drawn at the node h ∈ H. The
estimate η of xTA is then generated using the following recursive sampling scheme:

Sample(h, τ) :



if h is a terminal node : ηh = τ · u2(h)

else if h belongs to player 2: ∀a ∈ A(h) : Sample(h[a], τ)

else if C(h) = all: ∀a ∈ A(h) : Sample(h[a], ph,x(a) · τ)

else:

{
Draw

{
a1, . . . , aC(h)

}
∼ ph,x,

∀j = 1, . . . , C(h) : Sample(h[aj ], τ · 1
C(h) )

.

Sampling is initiated with h = r, τ = 1, where r is the root node of the game tree. From
the definition of this sampling scheme, it is clear that the expected value of any EFG
estimator is exactly xTA as desired. It is possible to generalize this class to sample
A(h) at nodes h belonging to player 2 as well.

Lanctot et al. [2009] introduced several unbiased sampling schemes for EFGs. These
are easily described in terms of our general sampling scheme. Chance sampling is
where a single sample is drawn if the node is a nature node, and otherwise all actions
are chosen. This corresponds to the following EFG estimator:

Cc(h) =

{
1 if h is a chance node
all else

.

In external sampling, a single sample is drawn for the nodes that do not belong to the
current player. So if we are estimating xTA, Ce(h) = 1.

In our experiments, for a given k, we focus on the following estimator

Cc,k(h) =

{
k if h is a chance node
all else

. (19)

7. THEORETICAL COMPARISON OF ALGORITHMS
Theorems 5.4 and 5.9 lead to the strongest known results on strong convexity param-
eter and set width of prox functions over treeplexes. As previously discussed, these
results are not only relevant for the MP and SMP algorithms, but all FOMs based
on d.g.f.s. In particular, they immediately improve the convergence rate of the EGT
algorithm as well.

CFR is the most popular algorithm for practical large-scale equilibrium finding. It
has a O( 1

ε2 ) convergence rate; but its dependence on the number of information sets
is only linear (and sometimes sublinear [Lanctot et al. 2009]). Thus, it can be more
attractive for obtaining low-quality solutions quickly for games with many information
sets. MCCFR has a similar convergence rate. When we apply SMP with our results, we
achieve an expected convergence rate of O( 1

ε2 ), but with only a square root dependence
on the set width Ω in (4), similar to that of MCCFR. The SMP and MCCFR algorithms
have much cheaper iterations compared to the deterministic algorithms.

There is a fundamental difference in how the constants of these algorithms depend
on the number of information sets in the game. When the strategy space of player i is
represented as a treeplex Q, the constant MQ in our formulation essentially measures
the branching factor over the other player and nature while ignoring branching from
player i. The CFR bound has a similar constant, but it measures the branching over
player i, while essentially taking the square root of the branching factor over the other
player and nature. If players 1, 2 and nature all have equal amounts of branching, then
the two constants are the same. Otherwise, depending on the game, either one can be



superior. For all of the above, we only measure nature branching in terms of outcomes
observed by player i.

Gilpin et al. [2012] give an equilibrium-finding algorithm presented as O(ln( 1
ε )), but

this form of their bound has a dependence on a certain condition number of the A ma-
trix: Their iteration bound for sequential games is O(

‖A‖2·ln(‖A‖2,2/ε)·
√
D

δ(A) ), where δ(A)

is the condition number of A, ‖A‖2 = supx 6=0
‖Ax‖2
‖x‖2 is the Euclidean matrix norm, and

D = maxx,x̄∈X ,y,ȳ∈Y ‖(x, y)−(x̄, ȳ)‖22. Unfortunately, the condition number is only shown
to be finite. Without any such unknown quantities based on condition numbers, Gilpin
et al. [2012] show an upper bound of O(‖A‖2·Dε ) convergence rate. This bound, while at
a ( 1

ε ) convergence rate as ours, suffers from worse constants. In particular, there exist
matrices such that ‖A‖2 =

√
‖A‖1‖A‖∞, where the ‖A‖1, ‖A‖∞ matrix norms are the

maximum absolute column and row sums, respectively. Together with the value of D,
this leads to a cubic dependence on the dimension of Q. For games where the players
have roughly equal-size strategy spaces, this is equivalent to an M4

Q constant.
CFR, EGT, MP, and SMP all need to keep track of a constant number of current

and/or average iterates, so the memory usage of all four algorithms is of the same
order: When gradients are computed using an iterative approach as opposed to stor-
ing matrices or matrix decompositions, each algorithm requires a constant times the
number of sequences in the sequence-form representation.

8. NUMERICAL COMPARISON OF ALGORITHMS
Based on the results derived in the previous sections, we investigate the practical per-
formance of several first-order methods on EFGs. The algorithms that we consider
are: EGT, MP, SMP, CFR, and MCCFR. For EGT, MP, and SMP we employ the dilated
entropy function, with weights MQj

on each j ∈ SQ, which, on a per-level basis, is pro-
portional to the weights in Theorem 5.4. For EGT, we employ the balancing heuristic
described by Hoda et al. [2010]. We run CFR with pruning, which was shown to im-
prove performance by Lanctot et al. [2009]. For MCCFR and SMP we tried 4 different
EFG gradient estimators: Cc,1, Cc,5, Cc,10, Cc,20 (c.f. (19)). In our experiments we only re-
port the results of the best for each: MCCFR was best with Cc,1 while SMP was best
with Cc,20. For SMP, rather than employing the very small fixed stepsize given in (4),
we use a decreasing stepsize that approaches this value from above.

We test these algorithms on a scaled up variant of the poker game Leduc hol-
dem [Southey et al. 2005], a benchmark problem in the incomplete-information game-
solving community. In our version, the deck consists of k pairs of cards 1 . . . k, for a
total deck size of 2k. Each player initially pays one chip to the pot, and is dealt a single
private card. After a round of betting, a community card is dealt face up. After a sub-
sequent round of betting, if neither player has folded, both players reveal their private
cards. If either player pairs their card with the community card they win the pot. Oth-
erwise, the player with the highest private card wins. In the event both players have
the same private card, they draw and split the pot.

The results are shown in Figure 2. Each graph is a loglog plot that shows the results
for a particular instance of Leduc with 6, 10, 16 and 30 card decks, respectively. For
each graph, we show the performance of all five algorithms, with the x-axis showing
the number of nodes in the game tree touched, and the y-axis showing the maximum
regret over the two players. By using the number of nodes touched, we can account
for the pruning in the CFR version that we run, and constants such as the fact that
the algorithms perform different numbers of tree traversals per iteration (for example,
MP and SMP require two prox function applications). In line with what the theory
predicts, the O( 1

ε ) algorithms EGT and MP show a better convergence rate, but we also
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Fig. 2: Regret as a function of the number of nodes touched in four different variants
of Leduc holdem for the CFR, MCCFR, EGT, MP, and SMP algorithms.

see that they initially start out slower. These results suggest that they might be better
suited for high-precision equilibrium computation. SMP does not perform as well; but
its performance improves as the instances get larger. While it is initially preferable to
EGT and MP for the 30-card game, it generally performs poorly. One reason for this
could be the small stepsizes required.

For these experiments we did not perform much engineering of the parameters of
these algorithms. However, we did find that both MP and SMP are very sensitive to
parameter selection. This suggests the possibility of improving their practical perfor-
mance with a more thorough experimental investigation. We leave this as future work.

9. CONCLUSIONS
This paper investigated the problem of computing Nash equilibria in two-player zero-
sum perfect-recall EFGs. On the theoretical side, we analyzed the strong convexity
properties of the dilated entropy function over treeplexes. By introducing specific
weights that are tied to the structure of the treeplex, we established much stronger
bounds on the strong convexity parameter of this function over any given treeplex.
In particular, these weights on each simplex in the treeplex are proportional to (1) the
depth of the treeplex under the simplex, and (2) the maximum value of the `1 norm un-
der the simplex. We then investigated the ratio Ω

ϕ , the maximum distance measured
by the dilated entropy function Ω over the strong convexity parameter ϕ. We showed
that our new analysis trades off a factor O(|SQ| d MQ) for a factor of 2d, thus vastly
improving the previous bounds on this ratio. Our results generalize to any treeplex,



whereas the prior results were only for uniform treeplexes, a significant restriction.
These results lead to significant improvements in the convergence rates of EGT, MP,
and SMP for EFG solving. Finally, we designed a class of sampling schemes for gradi-
ent estimation, generalizing prior schemes considered for MCCFR.

We numerically investigated the performance of EGT, MP, SMP, CFR, and MCCFR.
Our experiments showed that EGT and MP have desirable convergence rates, but also
that they start out slower. Both MP and SMP are much more customizable than the
others. Here we only considered their basic variants. It is of interest to investigate
various step sizes and parameter choices for MP to see if it achieves similar or better
performance than EGT. Our experiments also suggest that there might be a benefit
to applying FOMs such as these in large-scale game solving as opposed to the current
common practice which centers around CFR variants.

Another question that we leave open, theoretically and experimentally, is how well
our approach interacts with the abstraction approaches mentioned in Section 2. CFR
works well on such abstractions even though no theoretical justification exists [Lanctot
et al. 2012]. A promising research direction is to develop similar results for FOMs.
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