
Feature Filtering for Instance-Specific Algorithm Configuration

Christian Kroer
IT-University of Copenhagen

Copenhagen, Denmark
ckro@itu.dk

Yuri Malitsky
Dept. of Computer Science

Brown University
Providence, RI. USA
ynm@cs.brown.edu

Abstract—Instance-Specific Algorithm Configuration (ISAC)
is a novel general technique for automatically generating
and tuning algorithm portfolios. The approach has been very
successful in practice, but up to now it has been committed to
using all the features it was provided. However, traditional fea-
ture filtering techniques are not applicable, requiring multiple
computationally expensive tuning steps during the evaluation
stage. To this end, we show three new evaluation functions that
use precomputed runtimes of a collection of untuned solvers to
quickly evaluate subsets of features. One of our proposed func-
tions even shows how to generate such an effective collection of
solvers when only one highly parameterized solver is available.
Using these new functions, we show that the number of features
used by ISAC can be reduced to less than a quarter of the
original number while often providing significant performance
gains. We present numerical results on both SAT and CP
domains.

Keywords-feature selection; algorithm configuration; SAT;
CP;

I. INTRODUCTION

It has long been observed in the constraint programming
(CP) and satisfiability (SAT) communities that certain prob-
lems are easier to solve with one algorithm, but performance
then suffers on other problems. This observation has led to
the pursuit of designing approaches that can adapt to the
problem at hand. One such approach can be characterized
as algorithm configuration, which adjusts the parameters
defining the behavior of a solver to best suit the provided
training set [1], [9], [2]. Alternatively, algorithm portfolios
take advantage of the variety of solvers already developed
and the inherent variance in their performance. When given a
new instance, this approach predicts the performance quality
of each solver, to then use the one with the best expected
outcome [5], [13], [16], [33], [24], [15].

Instance-Specific Algorithm Configuration (ISAC) [11] is
a recent example of an approach which creates its own
portfolio of solvers. The approach first clusters the training
instances and then tunes a separate solver for each cluster.
When a new instance is provided it is assigned to a cluster
and then solved with the tuned solver. The tuned solver
can be a single parameterized solver like SATenstein [12],
saps [8], or even Cplex [10]. The solver can also be a
portfolio, where the tuner not only chooses the best solver
for a cluster, but also the parameters for that solver.

ISAC was recently shown to be highly effective in the SAT
domain. A novel solver tuned using the ISAC methodology
won 2 gold medals in the 2011 SAT competition [22].
ISAC’s application has also been shown for other domains
like set covering (SCP) and mixed integer (MIP) prob-
lems [11].

One of the major drawbacks of ISAC is its dependence
on the feature vector it uses to differentiate the problem
instances. The success of the entire clustering hinges on
the ability of these features to correctly group instances
that are likely to behave similarly under the same solver.
However, there is a disconnect between the clustering ob-
jective and the performance objective ISAC tries to improve.
So far, research of ISAC was fortunate that the computed
clusters yielded significant performance gains over the other
approaches.

To tackle this problem we propose an approach that builds
off our initial assumption that instances with similar features
will behave comparably under the same parameter settings.
We therefore design three new evaluation functions that can
be computed without retuning solvers for each iteration.
These functions are first evaluated on four standard SAT
benchmarks, and then confirmed in the CP domain.

In the remainder of the paper we give an overview of
related work in Section II and a description of ISAC in
Section III. Section IV presents the new evaluation strate-
gies we propose. Section V introduces the feature filtering
algorithms that we employ. Section VI presents the numeric
results on SAT and CP domains and Section VII concludes
with a discussion of our contributions and results.

II. RELATED WORK

Algorithm selection is a well studied approach in machine
learning [20], [27], [23]. In this scenario, a large number
of algorithms are run on a collection of training instances
and the resulting data would be used to train a model
mapping from (algorithm, problem) pairs to the expected
performance. The problem is represented as a vector of
feature values. When a new instance is provided, its feature
vector and expected time for each solver is computed. The
solver with the shortest expected runtime is then used to
solve the instance.

In the optimization domain, these portfolios were first
introduced in 2001 by Carla Gomes and Bart Selman [5].
Portfolio algorithms have become increasingly popular, es-
pecially after the success of SATzilla [32]. This SAT solver
dominated the SAT Competitions in 2007 and 2009 [21]
in the randomly generated problem category. The solver is
based on basic machine learning techniques: sparse multino-
mial logistic regression to predict the log runtime of a solver
and feedforward selection to filter superfluous features. In
the case of SATzilla, feature filtering can be applied directly
because a new prediction model can be trained quickly.

CPhydra [16] is another portfolio algorithm that domi-
nated the recent CP competitions, creating a schedule of
solvers in its portfolio that best utilizes the allotted time. In
this approach, a k-nearest-neighbor approach is employed
to gather the data used by a constraint program to create
the schedule. This approach assumes that all the features
are equally important and performs no feature filtering. This
could possibly be due to the time requirements of evaluating
the quality of a subset of features. Evaluation will need
a large number of constraint programs to be computed to
create a new schedule for each training instance before
overall performance is computed.

For situations where there is only a limited supply of
solvers available, a hybrid methodology has been proposed
that aims to create a custom set of solvers for the algorithm
portfolio. One such method is Hydra [31], which iteratively
tunes a new version of a highly parameterized solver, Saten-
stein [12], adding it to the existing portfolio only if it helps
to improve performance on a training set of instances. This
methodology is based on SATzilla, once the solver is added
the resulting portfolio is tuned just like SATzilla.

In ArgoSmart [15], the authors parametrize and tune
the ArgoSAT solver [3] using a partition of the 2002
SAT Competition instances from the Random category into
training and testing set. Using a supervised clustering ap-
proach, the authors build families of instances based on
the directory structure in which the SAT Competition has
placed these instances. The authors enumerate all possible
parametrization of ArgoSAT (60 in total) and find the
best parametrization for each family. For a test instance,
ArgoSmart then computes the 33 core SATzilla features that
do not involve runtime measurements [33] and assigns the
instance to one of the instance families based on majority
k-nearest-neighbor classification utilizing a non-Euclidean
distance metric. The best parametrization for that family is
then used to tackle the given instance. Yet here also, the
authors assume that all features are equally important.

In these and other approaches in the optimization com-
munity, algorithm portfolios have been shown to drastically
improve performance over using a single solver. However,
only a few of the approaches use feature filtering. This
is partly because applying any standard feature selection
methods would require very computationally expensive eval-

1: ISAC-Learn(A, T, F)
2: (F̄ , s, t)← Normalize(F)
3: (k, C, S)← Cluster (T, F̄)
4: for all i = 1, . . . , k do
5: Pi ← GGA(A,Si)
6: end for
7: return (k, P,C, s, t)

1: ISAC-Run(A, x, k, P, C, d, s, t)
2: f ← Features(x)
3: f̄i ← 2(fi/si)− ti ∀ i
4: i← mini(||f̄ − Ci||)
5: return A(x, Pi)

Algorithm 1: Instance-Specific Algorithm Configuration

uation functions. In this paper we show how ISAC can be
augmented using feature filtering with three newly proposed
evaluation functions.

III. ISAC

ISAC is a newly proposed approach for tuning algorithms
for the problem instances they will be used for. The approach
works as follows (see Algorithm 1). In the learning phase,
ISAC is provided with a parameterized solver A, a list
of training instances T , and their corresponding feature
vectors F . First, the gathered features are normalized so
that every feature ranges from [−1, 1], and the scaling and
translation values for each feature (s, t) is memorized. This
normalization helps keep all the features at the same order of
magnitude, and thereby keeps the larger values from being
given more weight than the lower values.

Then, the instances are clustered based on the normalized
feature vectors. Clustering is advantageous for several rea-
sons. First, training parameters on a collection of instances
generally provides more robust parameters than one could
obtain when tuning on individual instances. That is, tuning
on a collection of instances helps prevent over-tuning and al-
lows parameters to generalize to similar instances. Secondly,
the found parameters are “pre-stabilized,” meaning they are
shown to work well together.

To avoid specifying the desired number of clusters before-
hand, the g-means [6] algorithm is used. Robust parameter
sets are obtained by not allowing clusters to contain fewer
than a manually chosen threshold, a value which depends on
the size of the data set. Beginning with the smallest cluster,
the corresponding instances are redistributed to the nearest
clusters, where proximity is measured by the Euclidean
distance of each instance to the cluster’s center. The final
result of the clustering is a number of k clusters Si, and a
list of cluster centers Ci. Then, for each cluster of instances
Si, favorable parameters Pi are computed using the instance-
oblivious tuning algorithm GGA [2].

1: E Dist(C, R, I)
2: N ← ∅, v∗ ← 0
3: for i ∈ I do
4: Ni ←Normalize(Ri)
5: end for
6: for c ∈ C do
7: v∗ ← v∗ + |c| ∗

∑
i∈I

∑
j>i ||Ni −Nj ||

8: end for
9: return v∗

Algorithm 2: Evaluation functions used to measure the
quality of a clustering of instances.

GGA races a large number of parameter settings on
subsets of the training instances, with the best performing
parameters getting the chance to crossover and continue to
subsequent generations. Starting with a small number of
instances, the subset of instances used for tuning grows with
each iteration as the bad parameter settings get weeded out
of consideration. In the final generation of GGA, when all
training instances are used, the best parameter setting has
been shown to work very well on these and similar instances.

When running algorithm A on an input instance x, ISAC
first computes the features of the input and normalize them
using the previously stored scaling and translation values for
each feature. Then, the instance is assigned to the nearest
cluster. Finally, ISAC runs A on x using the parameters for
this cluster.

IV. CLUSTER EVALUATION

The effect of the filtering algorithms, such as the ones
discussed in Section V, strongly depends on the quality
of the evaluation function. In order to evaluate a set of
features using standard techniques, the training instances
would be clustered and a new solver tuned for each cluster.
The quality of the feature would then be defined as the
performance of the portfolio solver on some validation set
of instances. However, because of the long time needed
to tune the algorithms, evaluation based on this kind of
performance is impractical. To sidestep this issue, we instead
focus on the primary assumption behind ISAC; that a
solver will have consistent performance on instances that are
clustered together. Based on this assumption we introduce
three possible evaluation functions that utilize a collection
of untuned solvers to determine the quality of a cluster of
instances.

The first evaluation criteria is presented in Algorithm 2 as
E Dist. Given the clustering of the instances C, the runtime
of each untuned solver on each instance R, and the list
of instances I , this algorithm tries to match the relative
quality of solver runtimes on instances in the same cluster.
Thus, the algorithm tries to make sure that the same solver
works best on all instances in the cluster, and the same
solver provides the worst performance. Because the runtimes

1: E Time(C, R)
2: v∗ ← 0
3: for c ∈ C do
4: v∗ ← v∗ + mins∈R(Runtime(s, c))
5: end for
6: return v∗

Algorithm 3: Evaluation functions used to measure the
quality of a clustering of instances.

can vary significantly between instances, these times are
normalized for each instance to be from 0 to 1, with 0
being the fastest runtime and 1 the longest. These normalized
runtimes N can then be used to judge how similar two
instances are, and a good cluster is one where the average
euclidean distances between each instance within the cluster
is minimized. The evaluation of the overall clustering v∗ is
then the summation of the quality of each cluster weighted
by the number of instances in that cluster, |c|. Here we do
not consider the distances between clusters because it is not
necessarily the case that different clusters require different
solvers. Only the uniformity of the instances within a cluster
determine the success of a clustering.

An alternative evaluation function measures the quality of
the clustering directly by computing the performance of a
portfolio algorithm based on the available solvers. E Time
in Algorithm 3 creates a portfolio of untuned solvers and
chooses which solver to assign to each cluster. The algorithm
finds the best performing solver in R on the instances of each
cluster. The clustering can then be evaluated by summing
the score for each cluster when using the best solver. This
evaluation approach benefits from being similar to how ISAC
will be evaluated in practice, without having to tune each
solver for the cluster.

For Algorithm 3 we use the exact runtimes of the best
solvers to evaluate a clustering. We also experimented with
an algorithm where we again select the best solver for each
cluster, but the evaluation is done using a penalized version
of the runtimes, called Par10. Each instance not solved gets
penalized with a runtime that is ten times the cutoff time.
Using penalized runtimes makes the algorithms focus on
minimizing the number of instances not solved. However, we
found that using the regular non-penalized runtimes provided
better performance, both in terms of the average runtimes
achieved and number of instances solved.

Using the performance of a portfolio for evaluating the
clustering can yield very good results if the solvers in the
available portfolio are numerous and have a lot of variance
in their performance. This is true in the case of a well
studied problem like SAT but is not necessarily the case
in all problem domains. To circumvent this issue, we extend
the evaluation criteria to generate the desired portfolio.

Given a single, highly parameterized solver, it is possible

1: FeedForwardSelection(F , I , R)
2: F ∗ ← ∅ , F̂ ← F , s←∞ , s∗ ←∞
3: while s ≤ s∗ do
4: f∗ ← ∅ , s←∞
5: for f ∈ F̂ do
6: v = EVALUATE(CLUSTER(F ∗ ∪ f , I), R)
7: if v ≤ s then
8: f∗ ← f
9: s← v

10: end if
11: end for
12: if s ≤ s∗ then
13: F ∗ ← F ∗ ∪ f∗

14: s∗ ← s
15: end if
16: end while
17: return F ∗

Algorithm 4: Feed forward feature selection

to tune this solver using GGA. In our case however, we
do not need the best performing parameter set, but many
parameter sets that behave reasonably well and with a lot of
variance. These parameter sets can be initialized randomly,
but the resulting solvers are likely to perform very poorly.
In a case were every solver times out, it is impossible to
determine which solver is best. But, if we use the solvers
from an intermediate generation of GGA, we will find that
the very bad parameter sets have already been killed off
by the tuner, and all that remains are parameters that work
well on different subsets of our training data. Using these
parameter settings, we create a large portfolio of solvers that
we can use for the direct evaluation of a clustering. This
evaluation approach works as Algorithm 3, using the best
solver on each cluster to compute the performance score of
a clustering, the difference being that the runtimes of the
generated solvers are used in place of the regular solvers.

V. FILTERING ALGORITHMS

It is well established that the success of a machine
learning algorithm depends on the quality of its features. Too
few features might not be enough to properly differentiate
between two or more classes of instances. Alternatively, too
many features often results in some of the features being
noisy and even damaging. Furthermore, as the feature space
increases, more data is needed in order to make accurate
predictions. In this paper, we work with the three standard
feature selection algorithms: feed-forward selection, back-
ward selection, and a hybrid of the two. All three of these
algorithms can use any of the evaluation functions discussed
in Section IV.

Feed-forward selection (Algorithm 4) starts with an empty
set F ∗ and tries to add each of the available features F̂ .
Using each of these new subsets of features, the training set

I is clustered and evaluated. The feature f∗ whose addition
to the current set yields the best performance s is added to
the set and the process is repeated until no more features
can be added without the evaluation score deteriorating.

Alternatively, backward-selection starts with the full fea-
ture set and removes features one at a time in a manner
that is analogous with how feed forward selection adds
them. The algorithm terminates when such a removal leads
to a decrease in performance according to the evaluation
function.

A natural extension of the above two algorithms is a
hybrid approach of the two. As in backward selection, the
algorithm begins with the full feature set, and removes
features one at a time while the solution doesn’t deteriorate.
The algorithm however also checks if adding any of the
removed features improves the solution. If this is the case,
the feature is added back into the set. This helps when
the beneficial effects are being obfuscated by many noisy
features. Once the troublesome features are removed, the
benefits are observed and the mistake of removing the
feature is rectified.

VI. NUMERICAL RESULTS

For our experiments we first focus on the SAT do-
main, a well studied problem that has numerous solvers,
benchmarks, and well defined features. SAT is also a do-
main where ISAC has been shown to yield state-of-the-art
performance. Showing the performance gains on SAT we
then continue by switching to the CP domain. The timed
experiments used dual Intel Xeon 5540 (2.53 GHz) quad-
core Nehalem processors with 24 GB of DDR-3 memory
(1333 GHz).

A. Benchmarks

For SAT, we choose to focus on local search solvers
predominately due to the existence of SATenstein [12], a
highly parameterized solver. SATenstein is used to explore
our evaluation function that uses GGA to create a portfolio
of solvers. Evaluation is based on the HAND and RAND
datasets [31] that span a variety of problem types and were
developed to test local search based solvers. Because local
search can never prove that a solution doesn’t exist, these
four datasets only have satisfiable instances. These two data
sets were chosen because they have been shown to be hard
for portfolio algorithms in [31].

The HAND and RAND datasets are respectively com-
posed of hand-crafted and randomly generated instances.
The HAND dataset has 342 training and 171 testing in-
stances. The RAND dataset has 1141 training and 581 test-
ing instances. For features, we use the well established 48
features introduced in [32]. It is important to note that these
features have been used for SAT portfolios for over a decade,
so they have been thoroughly vetted as being important.

HAND BS All E Dist E Time E Time (GGA)
rsaps Features Forward Backward Hybrid Forward Backward Hybrid Forward Backward Hybrid

Par 10 - avg 3034 2789 2784 2823 2823 2546 2712 2711 2752 2748 2748
Par 10 - std 2977 2975 2980 2979 2979 2945 2975 2976 2974 2978 2978

Runtime - avg 296.9 294.8 289.5 296.5 296.5 273.0 280.8 280.8 289.6 285.1 285.1
Runtime - std 142.5 289.5 293.6 290.6 290.6 288.5 292 292.6 290.5 291.6 291.6

features - 48 10 33 33 4 20 23 5 39 39
clusters - 4 5 5 5 5 5 5 5 5 5
solved 93 92 92 91 91 99 94 94 93 93 93

% solved 54.39 53.8 53.8 53.2 53.2 57.89 54.97 54.97 54.39 54.39 54.39
RAND BS All E Dist E Time E Time (GGA)

gnovelty+ Features Forward Backward Hybrid Forward Backward Hybrid Forward Backward Hybrid
Par 10 - avg 1138 755.5 780.1 745.2 745.2 698.5 729.9 729.9 762.7 688.9 709.4
Par 10 - std 2239 1958 1995 1946 1946 1899 1936 1936 1971 1886 1911

Runtime - avg 126.2 95.61 92.33 94.58 94.58 85.1 88.59 88.59 93.48 84.8 86.72
Runtime - std 229.9 92.33 204.3 202.0 202.0 195.4 199.1 199.1 201.9 194.8 197.1

features - 48 5 37 37 6 38 38 5 30 33
clusters - 11 12 14 14 11 12 12 11 11 11
solved 483 510 507 511 511 515 512 512 509 516 514

% solved 83.13 87.78 87.26 88 88 88.64 88.12 88.12 87.61 88.81 88.47

Table I
RESULTS ON THE SAT BENCHMARKS, COMPARING THE BEST PERFORMING INDIVIDUAL SOLVER “BS”, THE ORIGINAL ISAC USING ALL FEATURES

“ALL FEATURES”, AND ALL THE COMBINATIONS OF EVALUATION FUNCTIONS AND FILTERING ALGORITHMS.

In these experiments we used an assortment of success-
ful local search solvers: paws [25], rsaps [8], saps [26],
agwsat0 [28], agwsat+ [29], agwsatp [30], gnovelty+ [18],
g2wsat [14], ranov [17], vw [19], and anov09 [7]. We also
use six additional fixed parameterizations of SATenstein,
known as Fact, Cmbc, R3fix, Hgen, Swgcp, and Qcp. For
evaluation, a 600 second timeout was used.

For the CP benchmarks we employ instances from
CPAI08 [4]. We removed a small number of instances
for which the cpHydra feature computation code [16] did
not work. The remaining instances were split into 901
train instances and 930 test instances. Our portfolio con-
sisted of a subset of the solvers that competed in the
original competition: Abscon 112v4 (AC), Abscon 112v4
(ESAC), bpsolver (2008-06-27), casper (zao), casper (zito),
choco2 dwdeg (2008-06-26), choco2 impwdeg (2008-06-
26), cpHydra (k 10), cpHydra (k 40), MDG-noprobe
(2008-06-27), MDG-probe (2008-06-27), Minion Tailor
(2008-07-04), Mistral-option (1.314), Mistral-prime (1.313),
SAT4J CSP (2008-06-13), Sugar (v1.13+minisat), Sugar
(v1.13+picosat). For the runtimes, we used the runtimes
from the competition results which had a 1800 second
timeout [4].

B. E Dist Approach
Table I shows the results of the best performing solver

over all the instances in each of the four benchmarks.
The table then presents the performance of an algorithm
portfolio of the 17 local search solvers tuned with ISAC
using the complete set of 48 features. In this scenario, once
the training instances are clustered, the best performing
solver in the portfolio is assigned to each cluster. The
decision of the solver to use is based on the best average
runtime. In all cases the average runtime was improved. The
change is especially significant for RAND. Furthermore,

as is expected, in all cases ISAC usually doesn’t use the
solver that is found best over all instances, which suggests
that certain solvers are better at solving certain instances
while sacrificing performance on other types. For the HAND
benchmark however, the time gain is minimal and one fewer
instance is solved. Judging by the performance of ISAC
with feature filtering, this poor performance is due to a
poor clustering as a result of some confounding and noisy
features.

Table I then shows the results from running ISAC after the
features are filtered using the euclidean distance evaluation
criteria, E Dist. It is interesting to note that for both of the
datasets, it is possible to maintain the same level of perfor-
mance with significantly fewer features. This is especially
true for feed-forward selection that uses less than a quarter
of the features. However, we also observe that there is no
significant improvement of the overall performance of the
resulting portfolio.

C. E Time Approach

Once we use a more accurate evaluation criteria, E Time,
we observe that ISAC’s performance can be boosted, as
seen in Table I. Here, feed-forward selection is again the
best performing approach and we observe improvements in
both of our datasets, although we also observe an increase
in the number of used features. This seems to support the
assumption that not all of the established 48 features are
necessary, and are in fact damaging to the clustering in
ISAC.

It is interesting to note that the features found by forward
selection do not overlap much for four benchmarks with only
two features appearing in both sets. The first is the maximum
ratio of positive to negative literals per clause. The second
is the number of unary literals in the problem.

Also of note is that feed-forward selection only chooses

CP cpHydra All Forward Backward
(k = 40) Features

Parscore 2667 2421 2124 1994
Std. deviation 6695 6083 5756 5589
Avg. runtime 286.1 278.8 242.3 234.5
Std. deviation 617.0 613.5 579.5 567.4

features 36 36 7 29
clusters - 18 20 19
solved 807 807 822 829
% solved 86.77 86.77 88.39 89.14

Table II
RESULTS ON THE CP BENCHMARK, COMPARING THE BEST

PERFORMING SOLVER “CPHYDRA”, ISAC USING “ALL FEATURES”,
AND THE FORWARD AND BACKWARD FILTERING ALGORITHMS USING

THE E TIME EVALUATION FUNCTION.

the local search probing features twice for RAND. In back-
ward selection however, almost all these probing features are
used in both benchmarks. These features are stochastic with
potentially a lot of variance between computations. They are
also very computationally expensive, especially for larger
instances. Fortunately, according to a comparison of the
Forward and Backward selection algorithms these features
are not needed and do not improve performance.

The number of clusters does not change drastically when
switching from the euclidean distance, E Dist, to the time
performance evaluation functions, E Time. This suggests
that simply increasing or decreasing the number of clusters
is not enough to improve performance. This also validates
our clustering approach, showing that if a cluster contains
similar instances, then it is possible to tune a very high
quality solver for those instances.

In these experiments, there is little difference in the fea-
tures found by backward selection and our hybrid approach.
This is not very surprising since the clustering is based on
a linear relation between the features, and it is unlikely that
a removed feature would become beneficial once another
feature is removed.

These results on SAT are encouraging, and as can be
seen in Table II they also extend to the CP domain. When
comparing all the single solvers, cpHydra significantly out-
performs the other solvers. The closest competitor is Mistral-
prime (1.313) which solves 780 instances. As shown in the
table, applying ISAC to tune a portfolio algorithm leads to
marginal improvements in the average runtime. However,
once feature filtering is applied the performance of the tuned
portfolio improves significantly. Using backward filtering
creates a performance gap to cpHydra equal to the one
separating cpHydra from its closest competitor.

D. E Time (GGA) Approach

Running the feature filtering algorithms using the runtimes
of the 100 GGA generated solvers yields the times presented
under “E Time (GGA)” in Table I. In this case, the forward
selection algorithm worsens performance on RAND, but
otherwise remains competitive with the original ISAC with

less than a 11% of the features. Backward selection does
not worsen performance on any datasets, and even gives
the best performance of all the approaches on the RAND
dataset, while removing a significant number of features in
all cases.

In all cases, we see that using feedforward selection
greatly reduces the number of needed features while usually
improving the overall performance of the resulting tuned
solver. Backward selection on the other hand seems like a
more conservative approach, removing fewer features but it
also offers consistent improvements over all datasets. This
suggests that there are some features that should not be used
for clustering, and all filtering algorithms remove these. But
there are also some dependancies between the features, and
including these features is important to improve the quality
of the clusters used by ISAC.

While feed-forward selection generally outperformed
backward selection on all datasets when using the portfolios
of solvers, we see that when using the GGA generated
solvers, backward selection clearly outperforms forward
selection. When using a portfolio of solvers, we have access
to more variety in solvers, as opposed to using a set of
parameterized versions of the same solver. This seems to
indicate that feedforward selection has a higher need for
diversity in solvers, as it struggles with picking out the most
important features starting from none, whereas backward
selection is able to successfully remove a large set of noisy
features and provide performance gains using the less diverse
GGA solvers.

VII. CONCLUSIONS

Instance-Specific Algorithm Configuration (ISAC) is a
newly proposed methodology that has been very successful
in tuning a wide range of solvers for SAT, MIP, and SC.
However, the approach was very dependent on the quality
of features it was provided. It is well known in the machine
learning community that a poorly selected set of features can
have a strong detrimental effect on performance. Standard
approaches for feature filtering were not applicable due
the computational cost associated with the evaluation of a
clustering using a subset of features. In this paper we showed
three modifications to the evaluation function that remove
the expensive portion of the approach. Applying feature
filtering to ISAC, we observe performance gains in both
SAT and CP domains while reducing the size of the feature
sets.

These performance gains are important in the case of SAT
since the 48 features are already a subset of a larger set of
89 features which has been carefully studied for the last ten
years. Yet even in this case, we show that proper feature
filtering does not worsen the performance but has a chance
to greatly improve it. This observation is confirmed in the CP
domain where the features have not been as carefully vetted.

Just applying ISAC on all 36 features didn’t improve the
number of solved instances. But once feature filtering was
applied the performance also improved.

REFERENCES

[1] B. Adenso-Diaz and M. Laguna. Fine-tuning of Algorithms
using Fractional Experimental Design and Local Search.
Operations Research, 54(1):99–114, 2006.

[2] C. Ansotegui-Gil, M. Sellmann, K. Tierney. A Gender-
Based Genetic Algorithm for the Automatic Configuration of
Algorithms. CP 2009, 142–157, 2009.

[3] ArgoSAT. http://argo.matf.bg.ac.rs/software/.

[4] CPAI08 Competition. http://www.cril.univ-artois.fr/CPAI08/.

[5] C.P. Gomes and B. Selman. Algorithm Portfolios. Artificial
Intelligence, 126(1–2):43–62, 2001.

[6] G. Hamerly and C. Elkan. Learning the K in K-Means. NIPS,
2003.

[7] H.H. Hoos. Adaptive Novelty+: Novelty+ with adaptive noise.
AAAI, 2002.

[8] F. Hutter, D. Tompkins, H.H. Hoos. RSAPS: Reactive Scaling
And Probabilistic Smoothing. CP, 2002.

[9] F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stuetzle.
ParamILS: An Automatic Algorithm Configuration Frame-
work. JAIR, 36:267–306, 2009.

[10] IBM. IBM CPLEX Reference manual and user manual.
V12.1, IBM 2009.

[11] S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney. ISAC –
Instance-Specific Algorithm Configuration. ECAI, 751–756,
2010.

[12] A.R. KhudaBukhsh, L. Xu, H.H. Hoos, K. Leyton-Brown.
SATenstein: Automatically Building Local Search SAT
Solvers From Components. IJCAI, 2009.

[13] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,
Y. Shoham. A Portfolio Approach to Algorithm Selection.
IJCAI, 1542–1543, 2003.

[14] C.M. Li and W.Q. Huang. G2WSAT: Gradient-based Greedy
WalkSAT. SAT, 3569:158–172, 2005.

[15] M. Nikolic, F. Maric, P. Janici. Instance Based Selection
of Policies for SAT Solvers. Theory and Applications of
Satisfiability Testing, 326–340, 2009.

[16] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent,
B. O’Sullivan. Using Case-based Reasoning in an Algorithm
Portfolio for Constraint Solving. Irish Conference on Artifi-
cial Intelligence and Cognitive Science, 2008.

[17] D.N. Pham and Anbulagan. ranov. Solver description. SAT
Competition, 2007.

[18] D.N. Pham and C. Gretton. gnovelty+. Solver description.
SAT Competition, 2007.

[19] S. Prestwich. VW: Variable Weighting Scheme. SAT, 2005.

[20] J.R. Rice. The algorithm selection problem. Advances in
Computers, 65–118, 1976.

[21] SAT Competition. http://www.satcomptition.org.

[22] SAT Competition 2011. http://www.cril.univ-artois.fr/SAT11/.

[23] K.A. Smith-Miles. Cross-disciplinary perspectives on meta-
learning for algorithm selection. ACM Comput. Surv., 41(1):
6:1–6:25, 2009.

[24] B. Silverthorn and R. Miikkulainen. Latent Class Models for
Algorithm Portfolio Methods. AAAI, 2010.

[25] J. Thornton, D.N. Pham, S. Bain, V. Ferreira. Additive versus
multiplicative clause weighting for SAT. PRICAI, 405–416,
2008.

[26] D.A.D Tompkins, F. Hutter, H.H. Hoos. saps. Solver descrip-
tion. SAT Competition, 2007.

[27] R. Vilata and Y. Drissi. A perspective view and survey of
meta-learning. Artificial Intelligence, Rev. 18, 77–95, 2002.

[28] W. Wei, C.M. Li, H. Zhang. Combining adaptive noise and
promising decreasing variables in local search for SAT. Solver
description. SAT Competition, 2007.

[29] W. Wei, C.M. Li, H. Zhang. Deterministic and random selec-
tion of variables in local search for SAT. Solver description.
SAT Competition, 2007.

[30] W. Wei, C.M. Li, H. Zhang. adaptg2wsatp. Solver description.
SAT Competition, 2007.

[31] L. Xu, H. H. Hoos, K. Leyton-Brown. Hydra: Automatically
Configuring Algorithms for Portfolio-Based Selection. AAAI,
2010.

[32] L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown. SATzilla2009:
an Automatic Algorithm Portfolio for SAT. Solver descrip-
tion. SAT Competition, 2009.

[33] L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown. SATzilla:
Portfolio-based Algorithm Selection for SAT. JAIR,
32(1):565–606, 2008.

