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Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium com-
putation in imperfect-information games. However, imperfect-recall abstractions are poorly understood,
and only weak algorithm-specific guarantees on solution quality are known. We develop the first general,
algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilib-
ria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our
results are for a class of games that generalizes the only previously known class of imperfect-recall abstrac-
tions for which any such results have been obtained. Further, our analysis is tighter in two ways, each of
which can lead to an exponential reduction in the solution quality error bound.

We then show that for extensive-form games that satisfy certain properties, the problem of computing
a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the
increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction
algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems.
If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric
space, and this immediately yields a 2-approximation algorithm for abstraction. Conversely, if this condition
is not satisfied, we show that the input does not form a metric space. Finally, we provide computational
experiments to evaluate the practical usefulness of the abstraction techniques. They show that running
counterfactual regret minimization on such abstractions leads to good strategies in the original games.

1. INTRODUCTION
Game-theoretic equilibrium concepts provide a sound definition of how rational agents
should act in multiagent settings. To operationalize them, they have to be accompanied
by techniques to compute equilibria, an important topic that has received significant
attention in the literature [Gilpin and Sandholm 2007b; Kroer et al. 2015; Lipton et al.
2003; Littman and Stone 2003; Zinkevich et al. 2007].

Typically, equilibrium-finding algorithms do not scale to very large games. This
holds even for two-player zero-sum games (that can be solved in polynomial
time [Koller et al. 1996]) when the games are large. Therefore, the following has
emerged as the leading framework for solving large extensive-form games [Sandholm
2010]. First, the game is abstracted to generate a smaller game. Then an (ε-)Nash
equilibrium is computed in the abstract game. Then, the strategy from the abstract
game is mapped back to the original game. This framework, where imperfect-recall
abstraction is used to generate the smaller game [Waugh et al. 2009b], is the lead-
ing approach in the Annual Computer Poker Competition (ACPC). For the last several
years, the winning no-limit Texas Hold’em bots have employed it (for example, see
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the winners “Baby Tartanian8” by Brown and Sandholm and “Slumbot” by Jackson,
from the ACPC [2016]). Recently, this approach was also used in security games [Lisy
et al. 2016]. We expect that it could also be relevant to settings such as sequential auc-
tions and trading, like the trading-agent competition, where abstraction approaches
have previously been considered [Wellman et al. 2005]. The motivation for imperfect-
recall is computational. It allows the agent to forget less important details, in order
to afford–from a computational perspective–to have a finer-grained abstraction of the
present. Halpern and Pass [2013] showed this same phenomenon in “computational
games,” where agents are charged for computation. In this setting, choosing to forget
information can be rational, because it decreases computational cost.

Ideally, abstraction would be performed in a lossless way, such that implementing an
equilibrium from the abstract game results in an equilibrium in the full game. Lossless
abstraction techniques were introduced by Gilpin and Sandholm [2007b] for a class of
games called games of ordered signals. Unfortunately, lossless abstraction often leads
to games that are still too large to solve. Thus, we must turn to lossy abstraction.
However, significant abstraction pathologies (nonmonotonicities) have been shown in
games while they cannot exist in single-agent settings: if an abstraction is refined, the
equilibrium strategy from that new abstraction can actually be worse in the original
game than the equilibrium strategy from a coarser abstraction [Waugh et al. 2009a]!
Until recently, all lossy abstraction techniques for general games of imperfect informa-
tion were without any solution quality bounds. Then, Basilico and Gatti [2011] gave
bounds for the special game class called patrolling security game. Sandholm and Singh
[2012] provided lossy abstraction algorithms with bounds for stochastic games. Lanctot
et al. [2012] presented regret bounds in a class of imperfect-recall abstractions for equi-
libria computed using the counterfactual regret minimization algorithm (CFR) [Zinke-
vich et al. 2007]. Kroer and Sandholm [2014] showed solution quality bounds for a
broad class of perfect-recall abstractions, and Kroer and Sandholm [2015] extended
these results to continuous action spaces. They left as an open problem whether sim-
ilar bounds can be achieved for imperfect-recall abstractions, which are the state of
the art in practical poker solving [Brown et al. 2015; Johanson et al. 2013; Waugh
et al. 2009b]. Waugh et al. [2015] and Brown and Sandholm [2015] develop iterative
abstraction-refinement schemes that converge to a Nash equilibrium in the limit, but
do not give bounds when an abstraction of the game is solved.

In contrast to prior work, our results are for a fairly general class of imperfect-
recall abstractions, and are algorithm agnostic; they apply to both Nash equilibria, and
strategies with bounded counterfactual regret. We focus on these two classes of strate-
gies because they are, to the best of our knowledge, the only types of strategies used in
practical large-scale game solving. While refinements of Nash equilibria are desirable
in some settings, they are usually too expensive to compute in the large-scale games
where abstractions are applied. For solving large imperfect-information games—such
as poker—an approximation of Nash equilibrium is usually computed (rather than a
refinement of Nash equilibrium) [Sandholm 2010, 2015]. For example, that is what has
been done for the leading program for two-player limit Texas Holdem [Bowling et al.
2015] and for the leading programs for two-player no-limit Texas Holdem [ACPC 2016;
Brown et al. 2015; Jackson 2016]. Two-player limit Texas Hold’em has 1014 information
sets in the game tree, while the no-limit variant has 10161 [Johanson 2013].1

To develop our results, we generalize the notion of skew well-formed games (SWFGs)
introduced by Lanctot et al. [2012], by introducing a new game class chance-relaxed

1Some authors have considered post-equilibrium computation techniques [Ganzfried and Sandholm 2015],
but these are applied after the abstraction is both chosen and solved approximately. That said, we expect
that our results extend to equilibrium refinements, and this would be an interesting extension.



skew well-formed (CRSWF) games. CRSWF games generalize SWFGs by also allowing
chance error. Enabling chance error allows for a richer set of abstractions where nodes
can go in the same abstract information set even if the nature probabilities of reaching
those nodes and going from those nodes are not the same (this was left as an open
problem by Lanctot et al. [2012]). This enables dramatically smaller abstractions for
some games. We extend the techniques of Kroer and Sandholm [2014] to give theoret-
ical solution-quality bounds for this class. The solution quality bounds we derive are
exponentially stronger than those of Lanctot et al. [2012] which had a linear depen-
dence on the number of information sets in the game tree, and did not weight the leaf
reward error by the probability of a given leaf being reached. The reward error term
in our result has only a linear dependence on tree height (actually, just the number of
information sets any single player can experience on a path of play). Our leaf reward
error term is weighted by the probability of the leaf being reached. Furthermore, our
bounds are independent of the equilibrium computation method, while that prior work
was only for CFR.

For games where abstraction of a subset of information sets at a single level is guar-
anteed to result in a CRSWF game, we show an equivalence between the problem of
computing a single-level abstraction that minimizes our theoretical solution-quality
guarantees and a class of clustering problems. Using the decrease in solution-quality
bound from abstracting a pair of information sets as a distance function, we show that
such abstraction problems form a metric space. This yields a 2-approximation algo-
rithm for performing abstraction at a single level in the game tree when information
sets differ only by the actions taken by players. When information sets differ based on
nature’s actions, our equivalence yields a new clustering objective that has not, to our
knowledge, been previously studied. Our clustering results yield the first abstraction
algorithm for computing imperfect-recall abstractions with solution-quality bounds.

Finally, we use our theoretical results to conduct experiments on a simple die-based
poker game that has been used as a benchmark for game abstraction in prior work.
The experiments show that the CFR algorithm works well even on abstractions where
different nature probabilities are abstracted together, and that the theoretical bound
is within 0 to 2 orders of magnitude of the regrets at CFR convergence.

2. EXTENSIVE-FORM GAMES AND ABSTRACTION CONCEPTS
An extensive-form game (EFG) Γ is a tuple 〈N,A, S, Z,H, σ0, u, I〉. N is the set of play-
ers. A is the set of all actions. S is a set of nodes corresponding to sequences of actions.
They describe a tree with root node r ∈ S. At each node s, some Player i is active
with actions As, and each branch at s denotes a different choice in As. Let tsa be the
node transitioned to by performing action a ∈ As at node s. The set of all nodes where
Player i is active is called Si. The set of leaf nodes is denoted by Z ⊂ S. For each leaf
node z, Player i receives a reward of ui(z). We assume, WLOG., that all utilities are
non-negative. Zs is the subset of leaf nodes reachable from a node s. Hi ⊆ H is the
set of heights in the game tree where Player i acts. H0 is the set of heights where
nature acts. σ0 specifies the probability distribution for nature, with σ0(s, a) denoting
the probability of nature choosing outcome a at node s. Ii ⊆ I is the set of information
sets where Player i acts. Ii partitions Si. For any two nodes s1, s2 ∈ I ∈ Ii, Player i
cannot distinguish among them, and As1 = As2 . We let X(s) denote the set of informa-
tion set and action pairs I, a in the sequence leading to a node s, including nature. We
let X−i(s), Xi(s) ⊆ X(s) be the subset of this sequence such that actions by the sub-
scripted player(s) are excluded or exclusively chosen. We let Xb(s) be the set of possible
sequences of actions players can take in the subtree below s, with Xb

−i(s), X
b
i (s) being

the set of future sequences excluding or limited to Player i, respectively. We denote
elements in these sets as ~a. Xb(s,~a), Xb

−i(s,~a), Xb
i (s,~a) are the analogous sets limited



to sequences that are consistent with the sequence of actions ~a. We let the set of leaf
nodes reachable from s for a particular sequence of actions ~a ∈ Xb(s) be Z~as For an
information set I on the path to a leaf node z, z[I] denotes the predecessor s ∈ I of z.

Perfect recall means that no player forgets anything that the player observed in the
past. Formally, for every Player i ∈ N , information set I ∈ Ii, and nodes s1, s2 ∈
I : Xi(s1) = Xi(s2). Otherwise, the game has imperfect recall. The most important
consequence of imperfect recall is that a player can affect the distribution over nodes in
their own information sets, as nodes in an information set may originate from different
past information sets of the player. For games Γ′ = 〈N,A, S, Z,H, σ0, u, I ′〉 and Γ =
〈N,A, S, Z,H, σ0, u, I〉, we say that Γ is a perfect-recall refinement of Γ′ if Γ has perfect-
recall, and for any information set I ∈ I : ∃I ′ ∈ I ′, I ⊆ I ′. That is, the game Γ can be
obtained by partitioning the nodes of each information set in I ′ appropriately. For
any perfect-recall refinement Γ, we let P(I ′) denote the information sets I ∈ I such
that I ⊆ I ′ and

⋃
I∈P(I′) = I ′. For an information set I in Γ, we let fI denote the

corresponding information set in Γ′.
We will focus on the setting where we start out with some perfect-recall game Γ,

and wish to compute an imperfect-recall abstraction such that the original game is a
perfect-recall refinement of the abstraction. Imperfect-recall abstractions will be de-
noted by Γ′ = 〈N,A, S, Z,H, σ0, u, I ′〉. That is, they are the same game, except that
some information sets have been merged.

We denote by σi a behavioral strategy for Player i. For each information set I where
it is the player’s turn to move, it assigns a probability distribution over AI , the actions
at the information set. σi(I, a) is the probability of playing action a. A strategy profile
σ = (σ0, . . . , σn) consists of a behavioral strategy for each player. We will often use
σ(I, a) to mean σi(I, a), since the information set uniquely specifies which Player i
is active. As described above, randomness external to the players is captured by the
nature outcomes σ0. We let σI→a denote the strategy profile obtained from σ by having
Player i deviate to taking action a at I ∈ Ii. Let the probability of going from node
s to a descendant ŝ under strategy profile σ be πσ(s, ŝ) = Π〈s̄,ā〉∈Xs,ŝσ(s̄, ā) where Xs,ŝ

is the nonempty set of pairs of nodes and actions on the path from s to ŝ. We let the
probability of reaching node s be πσ(s) = πσ(r, s), the probability of going from the
root node r to s. Let πσ(I) =

∑
s∈I π

σ(s) be the probability of reaching any node in I.
For probabilities over nature, πσ0 (s) = πσ̄0 (s) for all σ, σ̄, s ∈ S0, so we can ignore the
superscript and write π0.

For all definitions, the subscripts i,−i refer to the same definition, but exclusively
over or excluding Player i in the product of probabilities, respectively.

For information set I and action a ∈ AI at level k ∈ Hi, we let DaI be the set of infor-
mation sets at the next level in Hi reachable from I when taking action a. Similarly,
we let DlI be the set of descendant information sets at height l ≤ k, where DkI = {I}.
Finally, we let D~a,js be the set of information sets reachable from node s when action-
vector ~a is played with probability one.

2.1. Value functions
We define value functions both for nodes and for information sets. The value for Player
i of a given node s under strategy profile σ is V σi (s) =

∑
z∈Zs π

σ(s, z)ui(z). We use the
definition of counterfactual value of an information set [Zinkevich et al. 2007] to reason
about the value of an information set. The counterfactual value of an information set I
is the expected utility of the information set, assuming that all players follow strategy
profile σ, except that Player i plays to reach I. We normalize this by the probability of
reaching the information set. For a perfect-recall game Γ, the counterfactual value for



Player i of a given information set I under strategy profile σ is

V σi (I) =

{∑
s∈I

πσ−i(s)

πσ−i(I)

∑
z∈Zs π(s, z)ui(z) if πσ−i(I) > 0

0 if πσ−i(I) = 0
.

For the information set Ir that contains just the root node r, we have V σi (Ir) = V σi (r),
which is the value of playing the game with strategy profile σ. WLOG. we assume that
at the root node it is not nature’s turn to move. For imperfect-recall information sets,
we let W (I ′) =

∑
s∈I′

πσ(s)
πσ(I′)V (s) be the value of an information set.

In perfect-recall games, for information set I at height k ∈ Hi, V σi (I) can be
written as a sum over descendant information sets at height k̂ ∈ Hi, where
k̂ is the next level where Player i acts [Kroer and Sandholm 2014]): V σi (I) =∑
a∈AI σ(I, a)

∑
Î∈DaI

πσ−i(Î)

πσ−i(I)
V σi (Î). We will later be concerned with a notion of how much

better a player i could have done at an information set: the regret for information set
I and action a is r(I, a) = V σI→ai (I) − V σi (I). That is, the increase in expected utility
for Player i obtained by deviating to taking action a at I. The immediate regret at an
information set I given a strategy profile σ is r(I) = maxa∈AI r(I, a). Regret is defined
analogously for imperfect-recall games using W (I).

2.2. Equilibrium concepts
In this section we define the equilibrium concepts we use. We start with two classics.

Definition 2.1 (ε-Nash and Nash equilibria). An ε-Nash equilibrium is a strategy
profile σ such that for all i, σ̄i: V σi (r) + ε ≥ V

σ−i,σ̄i
i (r). A Nash equilibrium is an ε-

Nash equilibrium where ε = 0.

We will also use the concept of a self-trembling equilibrium, introduced by Kroer and
Sandholm [2014]. It is a Nash equilibrium where the player assumes that opponents
make no mistakes, but she might herself make mistakes, and thus her strategy must
be optimal for all information sets that she could mistakenly reach by her own fault.

Definition 2.2 (Self-trembling equilibrium). For a game Γ, a strategy profile σ is a
self-trembling equilibrium if it satisfies two conditions. First, it must be a Nash equi-
librium. Second, for any information set I ∈ Ii such that πσ−i(I) > 0, and for all alterna-
tive strategies σ̄i, V σi (I) ≥ V

σ−i,σ̄i
i (I). We call this second condition the self-trembling

property.

An ε-self-trembling equilibrium is defined analogously, for each information set I ∈ Ii,
we require V σi (I) ≥ V σ−i,σ̄ii (I)− ε. For imperfect-recall games, the property πσ−i(I ′) > 0
does not give a probability distribution over the nodes in an information set I ′, since
Player i can affect the distribution over the nodes. For such information sets, it will
be sufficient for our purposes to assume that σi is (approximately) utility maximizing
for some (arbitrary) distribution over P(I ′): our bounds are the same for any such
distribution.

2.3. Chance-relaxed skew well-formed (CRSWF) games
Now we introduce the class of imperfect-recall games that we consider as potential
abstractions of a perfect-recall game. We call this class CRSWF games. A CRSWF
game is an imperfect-recall game where there exists a perfect-recall refinement of the
game that satisfies a certain set of properties that we introduce below. We will focus on
the general problem of computing solution concepts in CRSWF games and mapping the



solution concept to a perfect-recall refinement. Typically, the perfect-recall refinement
is the original game, and the CRSWF game is an abstraction that is easier to solve.

Intuitively, a CRSWF game is an imperfect-recall game where there exists a refine-
ment that satisfies two intuitive properties for any pair of information sets that are
separated in the perfect-recall refinement. The first is that a bijection exists between
the leaf nodes of the information set pair such that leaves mapped to each other pass
through the same non-nature actions on the path from the information set to the leaf.
This ensures that the probability of reaching pairs of leaves that map to each other is
similar. The second is that a bijection exists between the nodes in the pair of informa-
tion sets, such that the path leading to two nodes mapped to each other passes through
the same information set-action pairs over all players except the acting player and na-
ture. This ensures that the conditional distribution over nodes in the information sets
is similar.

Definition 2.3. For an EFG Γ′, and a perfect-recall refinement Γ, we say that Γ′ is
a CRSWF game with respect to Γ if for all i ∈ N, I ′ ∈ I ′i, I, Ĭ ∈ P(I ′), there exists a
bijection φ : ZI → ZĬ such that for all z ∈ ZI :

(1) In Γ′, X−{i,0}(z) = X−{i,0}(φ(z)), that is, for two leaf nodes mapped to each other
(for these two information sets in the original game), the action sequences of the
other players on those two paths must be the same in the abstraction.2

(2) In Γ′, Xi(z[I], z) = Xi(φ(z)[Ĭ], φ(z)), that is, for two leaf nodes mapped to each other
(for information sets I and Ĭ in the original game), the action sequence of Player i
from I to z and from Ĭ to φ(z) must be the same in the abstraction.

Our definition implicitly assumes that leaf nodes are all at the same level. This is
without loss of generality, as any perfect-recall game can be extended to satisfy this.

With this definition, we can define the following error terms for a CRSWF refinement
Γ of an imperfect-recall game Γ′ for all i ∈ N, I ′ ∈ I ′i, I, Ĭ ∈ P(I ′), z ∈ I

—
∣∣∣ui(z)− δI,Ĭui(φ(z))

∣∣∣ ≤ εR
I,Ĭ

(z), the reward error at z, after scaling by δI,Ĭ at Ĭ.
—
∣∣∣π0(z[I], z)− π0(φ(z)[Ĭ], φ(z))

∣∣∣ = ε0
I,Ĭ

(z) , the leaf probability error at z.
—
∣∣∣π0(z[I])
π0(I) −

π0(φ(z)[Ĭ])

π0(Ĭ)

∣∣∣ = εD
I,Ĭ

(z[I]) , the distribution error of z[I].

The scaling term δI,Ĭ does not affect the abstract game; it can be chosen by the user
to minimize the bounds proved later. The reward error uses an inequality rather than
equality because the error at a leaf node can vary by player.

Instead of our probability and distribution error terms, Lanctot et al. [2012] require
π0(z) = lI,Ĭπ0(φI,Ĭ(z)), where lI,Ĭ is a scalar defined on a per information set pair basis.
We omit any such constraint, and instead introduce probability and distribution error
terms as above. Our definition allows for a richer class of abstractions. Consider some
game where every nature probability in the game differs by a small amount. For such
a game, no two information sets can be merged according to the SWFG definition,
whereas our definition allows such abstraction.

2It is possible to relax this notion slightly: if two actions of another player are not the same, as long as
they are on the path (at the same level) to all nodes in their respective full-game information sets (I and Ĭ),
they do not affect the distribution over nodes in the information sets, and are thus allowed to differ in the
abstraction.
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Fig. 1. Two subtrees of a game tree. Information sets are denoted by dotted lines. A CRSWF abstraction is
shown, with merged information sets and their node mapping denoted by dotted lines with arrowheads. All
actions are mapped to their corresponding upper/lower-case actions in the merged information sets.

We define uI,Ĭ(s) = maxi∈N,z∈Zs ui(z) + εR
I,Ĭ

(z), the maximum utility plus its scaled
error achieved at any leaf node. This will simplify notation when we take the maximum
over error terms related to probability transitions.

We now define additional aggregate approximation error terms. These will be useful
when reasoning inductively about more than one height of the game at a time. We
define the reward approximation error εR

I,Ĭ
(s) for information sets I, Ĭ ∈ P(I ′) and any

node s in Ĭ to be

εR
I,Ĭ

(s) =


εR
I,Ĭ

(z) if ∃z ∈ Z : z = s∑
a∈As σ0(s, a)εR

I,Ĭ
(tsa) if s ∈ S0

maxa∈As ε
R
I,Ĭ

(tsa) if s /∈ S0 ∧ s /∈ Z
,

We define the transition approximation error ε0
I,Ĭ

(s) for information sets I, Ĭ ∈ P(I ′)

and any node s in Ĭ to be

ε0
I,Ĭ

(s) = max
~a∈Xb−0(s)

∑
z∈Z~as

ε0
I,Ĭ

(z)uI,Ĭ(s)

We define the distribution approximation error for an information set pair I, Ĭ ∈ P(I ′)
to be

εD
I,Ĭ

=
∑
s∈I

εD
I,Ĭ

(s)uI,Ĭ(s).

Figure 1 shows two subtrees of an example game tree. Dotted lines with arrow heads
show a CRSWF abstraction of the game. First consider the left node for P2, which maps
to the right P2 node. It has distribution approximation error of zero (as is always the
case for singleton information sets). It has transition approximation error of 0.2 ·10 = 2
(the maximizing sequences of player actions ~a are [a, l] or [a, r]). Finally, the node has
reward approximation error 1 · 0.5, since the biggest utility difference between nodes
mapped to each other is 1, and the definition of reward approximation error allows
taking a weighted sum at nature nodes. Now consider the leftmost information set for
P1. The distribution approximation error at this information set is 0.2 · 10, since the
conditional probability of being at each of the two nodes in the information set differs
by 0.1 from the node in the information set that it is mapped to. The transition approx-
imation error is zero for both nodes in the information set. The reward approximation
error is zero, since all leaf nodes under the information set are mapped to leaf nodes
with the same utility.



3. STRATEGIES FROM ABSTRACT NEAR-EQUILIBRIA HAVE BOUNDED REGRET
To prove our main result, we first show that strategies with bounded regret at infor-
mation sets in CRSWF games have bounded regret at their perfect-recall refinements.

PROPOSITION 3.1. For any CRSWF game Γ′, refinement Γ, strategy profile σ, and
information set I ′ ∈ I ′ such that Player i has bounded regret r(I ′, a) for all a ∈ AI′ , the
regret r(I, a∗) at any information set I ∈ P(I ′) and action a∗ ∈ AI is bounded by

r(I, a∗) ≤ max
Ĭ∈P(I′)

δI,Ĭr(I
′, a∗) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ
.

PROOF. Given some I ′ such that πσ−i(I ′) > 0, we assume that πσi (I ′) > 0. For infor-
mation sets where this is not the case, we assume any distribution over the choices of
Player i leading to I ′. Note that other players cannot affect the distribution over P(I ′)
due to Condition 1 of Definition 2.3. By the definition of regret of an action, we have:

r(I ′, a∗) = WσI→a∗ (I ′)−Wσ(I ′)

=
∑
s′∈I′

πσ(s′)

πσ(I ′)

∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗z
′)ui(z

′)−
∑
s′∈I′

πσ(s′)

πσ(I ′)

∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z

′)

=
∑

Ĭ∈P(I′)

∑
s′∈Ĭ

πσ(s′)

πσ(I ′)

 ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(z

′)−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z

′)


Note that

∑
Ĭ∈P(I′)

∑
s′∈Ĭ

πσ(s′)
πσ(I′) =

∑
Ĭ∈P(I′)

πσ(Ĭ)
πσ(I′) sums over a probability distribu-

tion on P(I ′). We take the minimum over this distribution:

≥ min
Ĭ∈P(I′)

∑
s′∈Ĭ

πσ(s′)

πσ(Ĭ)

 ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(z

′)−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z

′)


Let Im be the minimizer of the expression above. Now we can bound the value using

the reward approximation error term:

=
∑
s′∈Im

πσ(s′)

πσ(Im)

 ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(z

′)−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z

′)


≥ 1

δI,Im

 ∑
s′∈Im

πσ(s′)

πσ(Im)

 ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(φIm,I(z

′))

−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(φIm,I(z

′))

− 1

δI,Im
2εRI,Im(s′)





Multiplying both sides by δI,Im gives

δI,Imr(I
′, a∗) ≥

∑
s′∈Im

πσ(s′)

πσ(Im)

 ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(φIm,I(z

′))

−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(φIm,I(z

′))− 2εRI,Im(s′)


To ease notation, let s′ = z′[Im], s = φIm,I(z

′)[I], and similarly z = φIm,I(z
′). Now we

can apply the distribution approximation error:

≥
∑
s′∈Im

(
πσ(s)

πσ(I)
− εDI,Im(s)

) ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(z)

−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z)− 2εRI,Im(s′)


For all a ∈ AI ,

∑
s′∈Ĭ

∑
z′∈Z

ts
′
a

can be rewritten as the sum
∑
s∈I
∑
z∈Ztsa

as Condi-

tion 2 of Definition 2.3 ensures that if (Ĭ , a) is on the path to z, then (I, a) is on the
path to φIm,I(z). This gives us

=
∑
s∈I

(
πσ(s)

πσ(I)
− εDI,Im(s)

) ∑
z∈Zts

a∗

πσ0 (ts
′

a∗ , z
′)ui(z)

−
∑
a∈AI

πσ(I ′, a)
∑
z∈Ztsa

πσ0 (ts
′

a , z
′)ui(z)− 2εRI,Im(s)


≥
∑
s∈I

πσ(s)

πσ(I)

 ∑
z∈Zts

a∗

πσ0 (ts
′

a∗ , z
′)ui(z)

−
∑
a∈AI

πσ(I ′, a)
∑
z∈Ztsa

πσ0 (ts
′

a , z
′)ui(z)− 2εRI,Im(s)

− εDI,Im
We rewrite the summation over Ztsa so that we first sum over the possible sequences

of actions Xb
−0(tsa) = Xb

−0(ts
′

a ) players excluding nature can take after tsa. We then sum
over the possible sequences of actions nature can take for the chosen sequence ~a. Since
this uniquely specifies leaf nodes, we can treat elements of this summation as such.
For any such node s and leaf node z, πσ(s, z) = πσ−0(~a)π0(s, z). We use this observation



along with the transition approximation error to get

≥
∑
s∈I

πσ(s)

πσ(I)

 ∑
~a∗∈Xb−0(ts

a∗ )

πσ(~a∗)
∑
z∈Z~a∗s

πσ0 (tsa∗ , z)ui(z)

−
∑

~a∈Xb−0(s)

πσ(~a)
∑
z∈Z~as

πσ0 (tsa, z)ui(z)− 2ε0I,Im(s)− 2εRI,Im(s)

− εDI,Im
Rearranging terms gives us that this is exactly equal to

= V σI→a∗ (I)− V σ(I)− 2
∑
s∈I

πσ(s)

πσ(I)

(
ε0I,Im(s) + εRI,Im(s)

)
− εDI,Im

= r(I, a∗)− 2
∑
s∈I

πσ(s)

πσ(I)

(
ε0I,Im(s) + εRI,Im(s)

)
− εDI,Im

Summarizing, this gives us

δI,Imr(I
′, a∗) ≥ r(I, a∗)− 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0I,Im(s) + εRI,Im(s)

)
− εDI,Im

⇔ r(I, a∗) ≤ δI,Imr(I ′, a∗) + 2
∑
s∈I

πσ(s)

πσ(I)

(
ε0I,Im(s) + εRI,Im(s)

)
+ εDI,Im

≤ max
Ĭ∈P(I′)

δI,Ĭr(I
′, a∗) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

which completes the proof.

Intuitively, the scaling variable δI,Ĭ ensures that if the regret at I ′ is largely based
on some other information set, then the regret is scaled to fit with the payoffs at I.

With this result, we are ready to prove our main results. First, we show that strate-
gies with bounded regret at each information set in CRSWF games are ε-self-trembling
equilibria when implemented in any perfect-recall refinement.

THEOREM 3.2. For any CRSWF game Γ′ and strategy σ with bounded immediate
regret rI′ at each information set I ′ ∈ Γ′ where σ−i(I ′) > 0, σ is an ε-self-trembling
equilibrium when implemented in any perfect-recall refinement Γ, where ε = maxi∈N εi
and

εi = max
~a∈Xbi (r)

∑
j∈Hi

∑
I∈D~a,jr

πσ−i(I)

(
max

Ĭ∈P(fI)
δI,Ĭr(fI) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

)
.

PROOF. Consider some alternative strategy σ∗ where Player i deviates to a best
response and σ−i = σ∗−i. We prove the bound by induction over the levels Hi belonging
to Player i. For the base case, consider any abstract information set I ′ ∈ I ′i and any
I ∈ P(I ′) at the lowest level l in Hi. We know that no mixed strategy is better than the
single best action when the strategies of the other players are held constant. This fact



and Proposition 3.1 gives us that:

V σ
∗
(I) ≤ max

a∈AI
V σI→a(I)

≤ V σ(I) + max
Ĭ∈P(I′)

δI,Ĭr(I
′) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

For the inductive step, we assume the following holds for all information sets I at
heights l < k ∈ Hi:

V σ
∗
(I) ≤ V σ(I) + max

~a∈Xbi (I)

∑
j∈Hi,j≤l

∑
Î∈D~a,jI

πσ−i(Î)

πσ−i(I)
ψ(Î)

ψ(Î) =

 max
Ĭ∈P(fÎ)

δÎ,Ĭr(fÎ) + 2
∑
s∈Î

πσ(s)

πσ(Î)

(
ε0
Î,Ĭ

(s) + εR
Î,Ĭ

(s)
)

+ εD
Î,Ĭ

 (1)

Now consider some information set I at height k. We apply the inductive assumption
to the value of an information set:

V σ
∗
(I) =

∑
a∈AI

σ∗(I, a)
∑
Î∈DaI

πσ−i(Î)

πσ−i(I)
V σ
∗
(Î)

≤
∑
a∈AI

σ∗(I, a)
∑
Î∈DaI

πσ−i(Î)

πσ−i(I)

V σ(Î) + max
~a∈Xbi (Î)

∑
j∈Hi,j<k

∑
Ì∈D~a,j

Î

πσ−i(Ì)

πσ−i(Î)
ψ(Ì)


≤ max
a∈AI

∑
Î∈DaI

πσ−i(Î)

πσ−i(I)
V σ(Î) + max

~a∈Xbi (I)

∑
j∈Hi,j<k

∑
Ì∈D~a,jI

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

The last inequality is obtained by taking the maximum over AI , splitting the terms,
and multiplying in πσ−i(Î)

πσ−i(I)
. Now we can apply Proposition 3.1 to bound the immediate

regret:

≤ V σ(I) + max
Ĭ∈P(fI)

δI,Ĭr(I
′, a∗) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

+ max
~a∈Xbi (I)

∑
j∈Hi,j<k

∑
Ì∈D~a,jI

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

= V σ(I) + ψ(I) + max
~a∈Xbi (I)

∑
j∈Hi,j<k

∑
Ì∈D~a,jI

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

= V σ(I) + max
~a∈Xbi (I)

∑
j∈Hi,j≤k

∑
Ì∈D~a,jI

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

This gives a bound on the regret at any information set I. Taking the regret at the root
node gives the desired result.



This version of our bound weights the error at each information set by the prob-
ability of reaching the information set, and similarly, the error at each of the nodes
in the information set is weighted by the probability of reaching it. This is important
for CFR-style algorithms, where the regret at each information set I only goes to zero
when weighted by πσ−i(I). If one wishes to compute an abstraction that minimizes the
bound independently of a specific strategy profile, it is possible to take the maximum
over all player actions. Importantly, this preserves the probability distribution over
errors at nature nodes. In the previous CFR-specific results of Lanctot et al. [2012],
the reward error bound for each information set was the maximum reward error at
any leaf node. Having the reward error be a weighted sum over the nature nodes and
only maximized over player action sequences allows significantly finer-grained mea-
surement of similarity between information sets. Consider any poker game where an
information set represents the hand that the player holds, and consider three hands: a
pair of aces IA, pair of kings IK , or pair of twos I2. When the reward error is measured
as the maximum over nodes in the information set, IA and IK are as dissimilar as
IA, I2, since the winner changes for at least one hand held by the opponent for both in-
formation sets. In contrast to this, when reward errors are weighted by the probability
of them being reached, we get that IA and IK are much more similar than IA and I2.

Our proof techniques have their root in those of Kroer and Sandholm [2014]. We de-
vise additional machinery, mainly Proposition 3.1 and the notion of CRSWF abstrac-
tions, to deal with imperfect recall. In doing so, our bounds get a linear dependence
on height for the reward approximation error. The prior bounds [Kroer and Sandholm
2014] have no dependence on height for the reward approximation error, and are thus
tighter for perfect-recall abstractions.

In general, it is known that imperfect-recall games are harder to solve than perfect-
recall games: In the two-player zero-sum case, the problem is NP-hard [Koller and
Megiddo 1992]. However, our game class, CRSWF games, is not so broad that it en-
compasses the type of game used in the proof by Koller and Megiddo [1992]. More
importantly, we are not necessarily interested in solving the imperfect-recall game.
Ultimately, we wish to find a strategy that we can map back to the original game, and
get a good strategy. Theorem 3.2 shows that we do not need to solve the imperfect-
recall game; we can just compute a strategy with low regret at each information set.
To do this, we can employ the CFR algorithm, similar to Lanctot et al. [2012].

We now show a second result, which concerns the mapping of Nash equilibria in
CRSWF games to approximate Nash equilibria in perfect-recall refinements.

THEOREM 3.3. For any CRSWF game Γ′ and Nash equilibrium σ, σ is an ε-Nash
equilibrium when implemented in any perfect-recall refinement Γ, where ε = maxi∈N εi
and

εi = max
~a∈Xbi (r)

∑
j∈Hi

∑
I∈D~a,jr

πσ−i(I)

(
max

Ĭ∈P(fI)
2
∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

)
.

PROOF. Assume that we are given a strategy σ that is a Nash equilibrium in Γ′,
and a strategy σ∗ = (σ−i, σ

∗
i ) where Player i best responds in Γ. For information sets

I ′ where σ−i(I ′) > 0, σ(I ′) = 0, a Nash equilibrium does not put any constraints on be-
havior. However, we know that Player i could have played a strategy that satisfies the
self-trembling property. Assume any such strategy σST , where it is equal to σ every-
where except at such information sets, where a utility-maximizing strategy is played
for some arbitrary, fixed distribution over P(I ′). We can then apply Theorem 3.2 to get



the following (where ψ(I) is defined as in Equation 1):

V σ
∗

i (r) ≤ V σ
ST

i (r) + max
~a∈Xbi (r)

∑
j∈Hi

∑
Ì∈D~a,jr

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

Where all regrets r(I ′, a∗) = 0 since σST is a Nash equilibrium. Now, we observe that
the utility is the same for σ and any σST at the root node, V σ

ST

i (r) = V σi (r):

V σ
∗

i (r) ≤ V σi (r) + max
~a∈Xbi (r)

∑
j∈Hi

∑
Ì∈D~a,jr

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

which is the result we wanted.

For practical game solving, Theorem 3.2 has an advantage over Theorem 3.3: any
algorithm that provides guarantees on immediate counterfactual regret in imperfect-
recall games can be applied. For example, the CFR algorithm can be run on a CRSWF
abstraction, and achieve the bound in Theorem 3.2, with the information set regrets
πσ−i(I)r(fI) decreasing at a rate of O(

√
(T )). Conversely, no good algorithms are known

for computing Nash equilibria in imperfect-recall games.

4. COMPLEXITY AND ALGORITHMS
We now investigate the problem of computing CRSWF abstractions with minimal error
bounds. First, we show that this is hard, even for games with a single player and a
game tree of height two.3

THEOREM 4.1. Given a perfect-recall game and a limit on the number of informa-
tion sets, determining whether a CRSWF abstraction with a given bound as in Theo-
rem 3.2 or 3.3 exists is NP-complete. This holds even if there is only a single player, and
the game tree has height two.

The hardness proof (given in Appendix A) is by reduction from clustering, which also
hints that clustering techniques could be used in an abstraction algorithm within our
framework. Performing abstraction at a single level of the game tree that minimizes
our bound reduces to clustering if the information sets considered for clustering sat-
isfy Conditions 1 and 2. The distance function for clustering depends on how the trees
match on utility and nature error, and the objective function depends on the topol-
ogy higher up the tree. In such a setting, an imperfect-recall abstraction with solution
quality bounds can be computed by clustering valid information sets level-by-level in a
bottom-up fashion. In general, a level-by-level approach has no optimality guarantees,
as some games allow no abstraction unless coupled with other abstraction at different
levels (a perfect-recall abstraction example of this is shown by Kroer and Sandholm
[2014]). However, considering all levels simultaneously is often impossible in practice.
A medical example of a setting where a level-by-level scheme would work well is given
by [Chen and Bowling 2012], where an opponent initially chooses a robustness mea-
sure, which impacts nature outcomes and utility, but not the topology of the different
subtrees. Similarly, the die-roll poker game introduced by Lanctot et al. [2012] as a
game abstraction benchmark is amenable to this approach.

We now show that single-level abstraction problems (SLAPs) where Conditions 1
and 2 of Definition 2.3 are satisfied for all merges form a metric space together with
the distance function that measures the error bound for merging information set pairs.

3Sandholm and Singh [2012] already showed hardness of computing an optimal abstraction when minimiz-
ing the actual loss of a unique equilibrium.



Clustering problems over metric spaces are often computationally easier, yielding
constant-factor approximation algorithms [Feder and Greene 1988; Gonzalez 1985].

Definition 4.2. A metric space is a set M and a distance function d : M ×M → R
such that the following holds for all x, y, z ∈ M : (a) d(x, y) ≥ 0 (b) d(x, y) = 0 ⇔ x = y
(identity of indiscernibles) (c) d(x, y) = d(y, x) (symmetry) (d) d(x, y) ≤ d(x, z) + d(z, y)
(triangle inequality) .

PROPOSITION 4.3. For a set of information sets Im such that any partitioning of Im
yields a CRSWF abstraction (with no scaling, i.e. δI,Ĭ = 1,∀I, Ĭ ∈ Im), and a function
d : Im×Im → R describing the loss incurred in the error bound when merging I, Ĭ ∈ Im,
the pair (Im, d) forms a metric space.

The proof is shown in Appendix B. Conversely to our result above, if the scaling vari-
ables can take on any value, the triangle inequality does not hold, so (Im, d) is not a
metric space.

Consider three information sets I1, I2, I3, each with two nodes reached with proba-
bility 0.9 and 0.1, respectively. Let there be one action at each information set, leading
directly to a leaf node in all cases. Let I1 = {1, 2}, I2 = {5, 11}, I3 = {10, 23}, where the
name of the node is also the payoff of Player 1 at the node’s leaf. We have that I1 and
I2 map onto each other with scaling variable δI1,I2 = 5 to get εRI1,I2 = 1 and I2,3 with
δI2,I3 = 2, εRI2,I3 = 1. However, I1 and I3 map onto each other with δI1,I3 = 10 to get
εRI1,I3 = 3 which is worse than the sum of the costs of the other two mappings, since
all reward errors on the right branches are multiplied by the same probability 0.1, i.e.,
0.1 · εRI1,I2 + 0.1 · εRI2,I3 < 0.1 · εRI1,I3 .

The objective function for our abstraction problem has two extreme versions. The
first is when the information set that is reached depends entirely on players not in-
cluding nature. In this case, the error bound over the abstraction at each level is the
maximum error of any single information set. This is equivalent to the minimum diam-
eter clustering problem, where the goal is to minimize the maximum distance between
any pair of nodes that share a cluster; Gonzalez [1985] gave a 2-approximation algo-
rithm when the distance function satisfies the triangle inequality. Coupled with Propo-
sition 4.3 this gives a 2-approximation algorithm for minimizing our bound on SLAPs.
The other extreme is when each of the information sets being reached differ only in
nature’s actions. In this setting, the error bound over the abstraction is a weighted
sum of the error at each information set. This is equivalent to clustering where the ob-
jective function being minimized is the weighted sum over all elements, with the cost
of each element being the maximum distance to any other element within its cluster.
To our knowledge, clustering with this objective function has not been studied in the
literature, even when the weights are uniform. Generally, the objective function can
be thought of as a tree, where a given leaf node represents some information set, and
takes on a value equal to the maximum distance to any information set with which
it is clustered. Each internal node either takes the maximum or weighted sum of its
child-node errors. The goal is to minimize the error at the root node. In practice, in-
teger programs (IPs) have sometimes been applied to clustering information sets for
EFG abstraction [Gilpin and Sandholm 2007a; Gilpin et al. 2007] (without bounds on
solution quality, and just for perfect-recall abstractions), and are likely to perform well
in our setting. An IP can easily be devised for any objective function in the above form.

For abstraction problems across more than a single level, Proposition 4.3 does not
give any guarantees. While the result can be applied level-by-level, the abstraction
performed at one level affects which information sets are valid for merging at other
levels, and thus the approximation factor is not preserved across the levels.
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Fig. 2. Regret bounds for varying SLAP sizes in DRP. The x-axis shows the number of information sets
in the abstraction, and the y-axis shows the theoretical bound on soluation quality. The total number of
information sets in the original game is 36

5. EXPERIMENTS
We now investigate what the optimal SLAP bounds (in terms of Theorem 3.3) look like
for the die roll poker (DRP) game, a benchmark game for testing abstraction [Lanctot
et al. 2012]. Die-roll poker is a simple two-player zero-sum poker game where dice,
rather than cards, are used to determine winners. At the beginning of the game, each
player antes one chip to the pot. The game then consists of two rounds. In each round,
each player rolls a private die (making the game imperfect information). Afterwards
a betting round occurs. During betting rounds, a player may fold (causing the other
player to win), call (match the current bet), or raise by a fixed amount, with a maxi-
mum of two raises per round. In the first round, each raise is worth two chips. In the
second round, each raise is worth four chips. The maximum that a player can bet is
13 chips, if each player uses all their raises. At the end of the second round, if neither
player has folded, a showdown occurs. In the showdown, the player with the largest
sum of the two dice wins all the chips in the pot. If the players are tied, the pot is split.

DRP has the nice property that abstractions computed at the bottom level of the tree
satisfy the conditions of Definition 2.3. At heights above that one we can similarly use
our clustering approach, but where two information sets are eligible for merging only
if there is a bijection between their future die rolls such that the information sets for
the future rolls in the bijection have been merged. A clustering would be computed
for each set in the partition that represents a group of information sets eligible for
merging. In the experiments in this paper we will focus on abstraction at the bottom
level of the tree. We use CPLEX to solve an IP encoding the SLAP of minimizing our
bound given a limit on the number of abstract information sets. The results are shown
in Figure 2. For one or two clusters, the bound is bigger than the largest payoff in the
game, but already at three clusters it is significantly lower. At eight clusters, the bound
is smaller than that of always folding, and decreases steadily to zero at eleven clusters
(the original game has 36 information sets). While these experiments show that our
bound is relatively small for the DRP game, they are limited in that we only performed
abstraction at a single level. If abstraction at multiple levels is performed, the bound
is additive in the error over the levels.

Another important question is how well strategies computed in abstractions that are
good—as measured by our bound—perform in practice. Lanctot et al. [2012] conducted
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Fig. 3. Log-log plots of the sum of the two players’ regrets as a function of CFR iterations on the bound-
minimizing abstraction of CDRP. The legends give the amount of correlation in the die rolls of the different
CDRP games on which we ran experiments. The horizontal lines show the respective ex-ante regret bound
of Theorem 3.3 for each of the CDRP games. (In the first game on the left where the correlation is zero, the
abstraction is lossless, so the horizontal line (not shown) would be at zero.)

experiments to investigate the performance of CFR strategies computed in imperfect-
recall abstractions of several games: DRP, Phantom tic-tac-toe (where moves are unob-
served), and Bluff. They found that CFR computes strong strategies in imperfect-recall
abstractions of all these games, even when the abstraction did not necessarily fall
under their framework. Their experiments validate a subset of the class of CRSWF
abstractions: ones where there is no nature error. Due to this existing experimental
work, we focus our experiments on problems where abstraction does introduce nature
error. One class of problems where such error can occur are settings where players ob-
serve imperfect signals of some phenomenon. For such settings, one would expect that
there is correlation between the observations made by the players. Examples include
negotiation, sequential auctions, and strategic acquisition.

DRP can be thought of as a game where the die rolls are the signals. Regular DRP
has a uniform distribution over the signals. We now consider a generalization of DRP
where die rolls are correlated: correlated die-roll poker (CDRP). There are many varia-
tions on how one could make the rolls correlated; we use the following. We have a single
correlation parameter c, and the probability of any pair of values (v1, v2), for Player 1
and 2 respectively, is 1

#sides2 − c |v1 − v2|. The probabilities for the second round of rolls
is independent of the first round. As an example, the probability of Player 1 rolling a 3
and Player2 rolling a 5 with a regular 6-sided die in either round would be 1

36 − 2c. We
generate DRP games with a 4-sided die and c ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}.

For each value of c, we compute the optimal bound-minimizing abstraction for the
second round of rolls, with a static mapping between information sets such that for any
sequence of opponent rolls, the nodes representing that sequence in either information
set are mapped to each other. The bound cost of the mappings is precomputed, and the
optimal abstraction is found with a standard MIP formulation of clustering. After com-
puting the optimal abstraction for a given game, we run CFR on the abstraction, and
measure the regret for either player in terms of their regret in the full game. Figure 3
shows the results of these experiments. On the x-axis is the number of CFR iterations.
On the y-axis is r1 + r2, where ri is the regret for Player i for the strategy at a given
iteration. Furthermore, the horizontal lines denote the regret bound of Theorem 3.3
for an exact Nash equilibrium. On the left in Figure 3 is shown the results for the four



smallest values of c, on the right the four largest values. As can be seen, CFR performs
well on the abstractions, even for large values of c: when c = 0.7, a very aggressive ab-
straction, the sum of regrets still goes down to ∼ 0.25 (for reference, always folding has
a regret of 1). We also see that for c ≥ 0.2, the regret stops decreasing after around 1000
iterations. This is likely where CFR converges in the abstraction, with the remaining
regret representing the information lost through the abstraction. We also see that our
theoretical bound is at the same order of magnitude as the actual bound even when
CFR converges.

6. DISCUSSION
In this paper, we proved bounds for abstractions obtained through merging infor-
mation sets. The perfect-recall results of Kroer and Sandholm [2014] also allow ab-
straction by removing actions available to players. The following approach can be
adopted for imperfect-recall abstraction with such branch removal, while still obtain-
ing solution-quality guarantees. First, a valid perfect-recall abstraction is computed,
where the desired branches are removed. The results by Kroer and Sandholm [2014]
give bounds on the solution quality of equilibria computed in this abstraction. An
imperfect-recall abstraction can then be computed from this perfect-recall abstraction,
with our results providing bounds on solution quality for this step. Solution quality
bounds can then be achieved for the final abstraction by taking the sum of the bounds
for the two steps. It is likely that tighter bounds could be derived by analyzing the
distance between the original game and the final abstraction directly. We leave this as
future research.

An important avenue for future research is how to merge the solution-quality bounds
obtained in this work with practical algorithms for generating abstractions. We showed
how single-level abstraction problems can be addressed. For multi-level abstraction, a
similar approach can be adopted, but where the abstraction is either computed greed-
ily level-by-level, or using IP or search algorithms that ensure that the abstraction
satisfies Conditions 1 and 2 of Definition 2.3 across levels. Kroer and Sandholm [2015]
showed that the results for perfect-recall abstraction from Kroer and Sandholm [2014]
can be used to prove bounds for EFGs with continuous action spaces. It would be in-
teresting to show similar results for the imperfect-recall setting.
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KROER, C., WAUGH, K., KILINÇ-KARZAN, F., AND SANDHOLM, T. 2015. Faster first-order meth-

ods for extensive-form game solving. In EC-15.
LANCTOT, M., GIBSON, R., BURCH, N., ZINKEVICH, M., AND BOWLING, M. 2012. No-regret

learning in extensive-form games with imperfect recall. In ICML-12.
LIPTON, R., MARKAKIS, E., AND MEHTA, A. 2003. Playing large games using simple strategies.

In EC-03.
LISY, V., DAVIS, T., AND BOWLING, M. 2016. Counterfactual regret minimization in sequential

security games. In AAAI-16.
LITTMAN, M. AND STONE, P. 2003. A polynomial-time Nash equilibrium algorithm for repeated

games. In EC-03.
SANDHOLM, T. 2010. The state of solving large incomplete-information games, and application

to poker. AI Magazine. Special issue on Algorithmic Game Theory.
SANDHOLM, T. 2015. Solving imperfect-information games. Science 347, 6218.
SANDHOLM, T. AND SINGH, S. 2012. Lossy stochastic game abstraction with bounds. In EC-12.
WAUGH, K., MORRILL, D., BAGNELL, D., AND BOWLING, M. 2015. Solving games with func-

tional regret estimation. In AAAI-15.
WAUGH, K., SCHNIZLEIN, D., BOWLING, M., AND SZAFRON, D. 2009a. Abstraction pathologies

in extensive games. In AAMAS-09.
WAUGH, K., ZINKEVICH, M., JOHANSON, M., KAN, M., SCHNIZLEIN, D., AND BOWLING, M.

2009b. A practical use of imperfect recall. In SARA-09.
WELLMAN, M. P., REEVES, D. M., LOCHNER, K. M., CHENG, S.-F., AND SURI, R. 2005. Ap-

proximate strategic reasoning through hierarchical reduction of large symmetric games. In
AAAI-05.

ZINKEVICH, M., BOWLING, M., JOHANSON, M., AND PICCIONE, C. 2007. Regret minimization
in games with incomplete information. In NIPS-07.



A. PROOF OF THEOREM 4.1
PROOF. Consider the two-dimensional k-center clustering decision problem with the

Lq distance metric. It is defined as follows: given a set P = {(x1, y1), . . . , (xn, yn)} of n
points in the plane, and an integer k, does there exist a partition of P into k clusters
C = {c1, . . . , ck} such that the maximum distance ‖p − p′‖q ≤ c between any pair of
points p, p′ in the same cluster is minimized. This problem is NP-hard to approximate
within a factor of 2 for q =∞, amongst others. [Feder and Greene 1988].

Given such a problem, we construct a perfect-recall game as follows. For each point
p ∈ P , we construct an information set Ip. We insert two nodes sxp , syp in each infor-
mation set Ip, representing the dimensions x, y respectively. All these nodes descend
directly from the root node r, where Player 1 acts. At each information set we have two
actions, ac, av. For any point p, we add leaf nodes at the branch ac with payoff M, 2M at
the nodes sxp , syp respectively. If we pick a sufficiently large M , this ensures that for any
two points p, p′, their nodes sxp , sxp′ will map to each other, and similarly for y. This also
ensures that the scaling variable has to be set to 1 for all information set mappings.
For the branches av, we add leaf nodes with utility equal to the x, y coordinate of p at
the sxp , syp nodes respectively.

There is a one-to-one mapping between clusterings of the points P and par-
titions of the information sets {Ip : p ∈ P}. The quality of a clustering is
maxz∈{x,y}maxj=1,...,k maxp,p′∈cj |p(z)− p′(z)|. Since Player 1 acts at r, the abstraction
quality bound is equal to the maximum difference over any two leaf nodes mapped to
each other, as ε0 = εD = 0. This is the same as the quality measure of the cluster-
ing. Thus, an optimal k size clustering is equivalent to an optimal k information set
abstraction.

Given some CRSWF abstraction, verifying the solution is easy to do: in one top-
down traversal of the game tree, compute the node distributions at each information
set. For each full-game information set, this gives the distribution-approximation er-
ror. For each information set pair mapped to each other, the transition- and reward-
approximation error can now be computed by a single traversal of the two. Thus the
problem is in NP.

B. PROOF OF PROPOSITION 4.3
PROOF. The first condition follows from the other three. Condition b, identity of in-

discernibles, does not hold for information sets. However, any pair of information sets
with distance zero can be merged losslessly in preprocessing, thus rendering the con-
dition true (having distance zero is transitive, so the minimal preprocessing solution
is unique). Condition c, symmetry, holds by definition, since our distance metric is de-
fined as the error incurred from merging two information sets, which considers the
error from both directions of the mapping.

Finally, we show that Condition d, the triangle inequality holds. Consider any three
information sets I1, I2, I3 ∈ Im. We need to show that d(I1, I3) ≤ d(I1, I2) +d(I2, I3). Let
φI1,I2 , φI2,I3 be the mappings for I1, I2 and I2, I3 respectively. We construct a mapping
φI1,I3 = φI2,I3 ◦ φI1,I2 and show that it satisfies the triangle inequality. For the leaf
payoff error, since δI1,I2 = δI2,I3 = 1, at any leaf z ∈ ZI1 we get:

ui(z) ≤ ui(φI1,I2(z)) + εI1,I2(z) ≤ ui(φI2,I3(φI1,I2(z))) + εI2,I3(φI1,I2(z)) + εI1,I2(z)



For the nature leaf probability error we can apply the same reasoning:

πσ0 (z[I1], z)

≤ πσ0 (φI1,I2(z[I1]), φI1,I2(z)) + ε0I1,I2

≤ πσ0 (φI2,I3(φI1,I2(z[I1])), φI2,I3(φI1,I2(z))) + ε0I2,I3(φI1,I2(z)) + ε0I1,I2(z)

Again, we derive the distribution error using a similar approach:

π0(z[I1])

π0(I1)

≤ π0(φI1,I2(z[I1]))

π0(I2)
+ εDI1,I2(z[I1])

≤ π0(φI2,I3(φI1,I2(z[I1])))

π0(I3)
+ εDI2,I3(φI2,I3(z[I1])) + εDI1,I2(z[I1])

This completes the proof.


