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ABSTRACT
Limited lookahead has been studied for decades in complete-infor-
mation games. We initiate a new direction via two simultaneous
deviation points: generalization to incomplete-information games
and a game-theoretic approach. We study how one should act when
facing an opponent whose lookahead is limited. We study this for
opponents that differ based on their lookahead depth, based on
whether they, too, have incomplete information, and based on how
they break ties. We characterize the hardness of finding a Nash
equilibrium or an optimal commitment strategy for either player,
showing that in some of these variations the problem can be solved
in polynomial time while in others it is PPAD-hard or NP-hard. We
proceed to design algorithms for computing optimal commitment
strategies—for when the opponent breaks ties favorably, according
to a fixed rule, or adversarially. We then experimentally investigate
the impact of limited lookahead. The limited-lookahead player of-
ten obtains the value of the game if she knows the expected values
of nodes in the game tree for some equilibrium—but we prove this
is not sufficient in general. Finally, we study the impact of noise in
those estimates and different lookahead depths. This uncovers an
incomplete-information game lookahead pathology.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
J.4.a [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Theory, Economics

Keywords
Game theory, equilibrium finding, limited lookahead

1. INTRODUCTION
Limited lookahead has been a central topic in AI game playing

for decades. To date, it has been studied in single-agent settings and
complete-information games—specifically in well-known games
such as chess, checkers, Go, etc., as well as in random game tree
models [11, 22, 23, 20, 21, 2, 24, 25]. In this paper, we initi-
ate the game-theoretic study of limited lookahead in incomplete-
information games. Such games are significantly more broadly ap-
plicable to practical settings—for example auctions, negotiations,
military settings, security, cybersecurity, and medical settings—
than complete-information games. Mirrokni, Thain, and Vetta [19]
conducted a game-theoretic analysis of lookahead, but they con-
sider only complete-information games, and the results are for four
specific games rather than broad classes of games. Instead, we
analyze the questions for incomplete information and for general

games. Specifically, we study general-sum extensive-form games.
As is typical in the literature on limited lookahead in complete-
information games, we derive our results for a two-agent setting.
One agent is a rational player (Player r) trying to optimally exploit
a limited-lookahead player (Player l).

Our results extend immediately to one rational player and more
than one limited-lookahead player, as long as the latter all break ties
according to the same scheme (statically, favorably, or adversarially—
as described later in the paper). This is because such a group of
limited-lookahead players can be treated as one from the perspec-
tive of our results.

The type of limited-lookahead player we introduce is quite natu-
ral and analogous to that in the literature on complete-information
games. Specifically, we let the limited-lookahead player l have a
node evaluation function that places numerical values on all nodes
in the game tree. Given a strategy for the rational player, at each in-
formation set at some depth i, Player l picks an action that maxi-
mizes the expected value of the evaluation function at depth i+ k,
assuming optimal play between those levels.

Our study is the game-theoretic, incomplete-information gener-
alization of lookahead questions studied in the literature and there-
fore interesting in its own right. The model also has applications
such as biological games, where the goal is to steer an evolution
or adaptation process (which typically acts myopically with looka-
head 1) [28] and security games where opponents are often as-
sumed to be myopic (as makes sense when the number of adver-
saries is large [32]). Furthermore, investigating how well a rational
player can exploit a limited-lookahead player lends insight into the
limitations of using limited-lookahead algorithms in multiagent de-
cision making.

We consider the problem of exploiting a limited-lookahead op-
ponent under various assumptions about the opponent, mapping out
the hardness of the problem under all these alternatives assump-
tions. We consider three dimensions: whether the opponent has in-
formation sets, whether the opponent has lookahead 1 or more, and
whether the opponent breaks ties statically, adversarially, or favor-
ably. If Player l has no information sets, lookahead 1, and breaks
ties either adversarially or by a static scheme, we show that both
a Nash equilibrium and an optimal strategy to commit to (i.e., a
Stackelberg strategy) can be found in polynomial time. Conversely,
if any of these assumptions do not hold, we show that equilibrium
finding is PPAD-hard and finding an optimal strategy to commit to
is NP-hard.

We then design algorithms for finding an optimal strategy to
commit to for the unlimited, rational player r. We focus on this
rather than equilibrium computation because the latter seems non-
sensical in this setting: the limited-lookahead player determining
a Nash equilibrium strategy would require her to reason about the
whole game for the rational player’s strategy, which rings contrary
to the limited-lookahead assumption. Furthermore, optimal strate-



gies to commit to are desirable for applications such as biological
games (because evolution is responding to what we as the “steerer"
are doing) and security games (where the defender typically gets to
commit to a strategy). Computing optimal strategies to commit to
in standard rational settings has previously been studied in normal-
form games [4] and extensive-form games [17], the latter implying
some complexity results for our setting as we will discuss.

For the case where the limited-lookahead player breaks ties in
favor of Player r, or by some static scheme, we develop a mixed-
integer program (MIP) that is a natural extension of the sequence-
form linear program (LP) from the two-player zero-sum setting.

Then, we derive an algorithm for solving the setting where the
limited-lookahead player breaks ties adversarially. For a given set
of actions that are optimal for the limited-lookahead player, this
ends up being a zero-sum game between the rational player and the
tie-breaking rule. We then show how to embed this LP in a MIP
that branches on which action set to make optimal for the limited-
lookahead player.

We experimentally evaluate the usefulness of exploiting limited-
lookahead opponents in two recreational games using our new al-
gorithms. The limited-lookahead player often obtains the value of
the game if she knows the expected values of nodes in the game
tree for some equilibrium—but we provide a counterexample that
shows that this is not sufficient in general. We go on to study the
impact of noise in those estimates, and different lookahead depths.
We uncover an incomplete-information game lookahead pathology,
and show how it can be embedded into any game.

As in the literature on lookahead in complete-information games,
a potential weakness of our approach is that we require knowing
the h function (but make no other assumptions about what infor-
mation h encodes). In practice, this function may not be known. As
in the perfection-information setting, this can lead to the rational
exploiter being exploited. However, many practical settings do not
have this problem. For example, biological design games [28] and
fare-inspection games [32] involve myopic agents that would not be
expected to design strategies that exploit the rational player’s errors
in beliefs about h. If there are multiple limited-lookahead players,
it seems even less likely that they could exploit the rational player
in this way, as it may require coordination/cooperation.

In general, this paper can be taken as a prescriptive theory of
how one should play against a limited-lookahead player, and how a
limited-lookahead player should play, or as an investigation of how
badly a best-responding limited-lookahead player can be exploited.

2. EXTENSIVE-FORM GAMES
We start by defining the class of games that the players will play,

without reference to limited lookahead. The class is general and
standard.

An extensive-form game Γ is a tuple 〈N,A, S, Z,H, σ0, u, I〉.
N is the set of players.A is the set of all actions in the game. S is a
set of nodes corresponding to sequences of actions. They describe
a tree with root node sr ∈ S. At each node s, it is the turn of
some Player i to move. Player i chooses among actions As, and
each branch at s denotes a different choice in As. Let tsa be the
node transitioned to by taking action a ∈ As at node s. The set of
all nodes where Player i is active is called Si. Z ⊂ S is the set
of leaf nodes, where ui(z) is the utility to Player i of node z. We
assume, without loss of generality, that all utilities are non-negative.
Zs is the subset of leaf nodes reachable from a node s. Hi ⊆ H
is the set of heights in the game tree where Player i acts. H0 is
the set of heights where Nature acts. σ0 specifies the probability
distribution for Nature, with σ0(s, a) denoting the probability of
Nature choosing outcome a at node s.

Incomplete information is represented in the game model using

information sets. Ii ⊆ I is the set of information sets where Player
i acts. Ii partitions Si. For nodes s1, s2 ∈ I, I ∈ Ii, Player i
cannot distinguish among them, and As1 = As2 .

We denote by σi a behavioral strategy for Player i. For each
information set I ∈ Ii, it assigns a probability distribution over
AI , the actions at the information set. σi(I, a) is the probability of
playing action a. A strategy profile σ = (σ0, . . . , σn) consists of
a behavioral strategy for each player. We will often use σ(I, a) to
mean σi(I, a), since the information set specifies which Player i is
active. As described above, randomness external to the players is
captured by the Nature outcomes σ0. Using this notation allows us
to treat Nature as a player when convenient, although Nature selects
actions according to fixed probabilities.

Let the probability of going from node s to node ŝ under strategy
profile σ be πσ(s, ŝ) = Π〈s̄,ā〉∈Xs,ŝ

σ(s̄, ā) where X(s, ŝ) is the
set of pairs of nodes and actions on the path from s to ŝ. We let the
probability of reaching node s be πσ(s) = πσ(sr, s), the probabil-
ity of going from the root node to s. Let πσ(I) =

∑
s∈I π

σ(s) be
the probability of reaching any node in I . πσi (I) = πσi (s)∀s ∈ I
due to perfect recall. For probabilities over Nature, πσ0 = πσ̄0 for all
σ, σ̄, so we can ignore the strategy profile superscript and write π0.
Finally, for all behavioral strategies, the subscript −i refers to the
same definition, excluding Player i. For example, πσ−i(s) denotes
the probability of reaching s over the actions of the players other
than i, that is, if i played to reach s with probability 1.

3. MODEL OF LIMITED LOOKAHEAD
We now describe our model of limited lookahead, which we con-

sider to be very intuitive.
We use the term optimal hypothetical play to refer to the way the

limited-lookahead agent thinks she will play when looking ahead
from a given information set. In actual play part way down that
plan, she may change her mind because she will then be able to see
to a deeper level of the game tree (given that her lookahead depth
is still the same and she will be at a deeper part of the tree).

Let k be the lookahead of Player l, and SkI,a the nodes at the
lookahead depth k below information set I that are reachable
(through some path) by action a. As in prior work in the complete-
information game setting, Player l has a node-evaluation function
h : S → R that assigns a heuristic numerical value to each node in
the game tree.

Given a strategy σr for the other player and fixed action prob-
abilities for Nature, Player l chooses, at any given information set
I ∈ Il at depth i, a (possibly mixed) strategy whose support is
contained in the set of actions that maximize the expected value of
the heuristic function at depth i + k, assuming optimal hypotheti-
cal play by her (maxσl in the formula below). We will denote this
set by A∗I =

{a : a ∈ arg max
a∈AI

max
σl

∑
s∈I

πσ−l(s)

πσ−l(I)

∑
s′∈Sk

I,a

πσ(tsa, s
′)h(s′)},

where σ = {σl, σr}. Here moves by Nature are also counted to-
ward the depth of the lookahead of the limited-lookahead player,
and when looking through such nodes, that player takes an expec-
tation over Nature’s moves at that node.

The model is flexible as to how the rational player chooses σr
and how the limited-lookahead player chooses a (possibly mixed)
strategy with supports within the sets A∗I . For one, we can have
these choices be made for both players simultaneously according to
the Nash equilibrium solution concept, so neither player wants to
change her choices given that the other does not change. As another
example, we can ask how the players should make those choices if
one of the players gets to make, and commit to, all her choices be-
fore the other. This begets multiple settings based on which player



gets to commit first and how ties are broken. We will study all of
the above variants. Other solution concepts and refinements could
also be used.

4. COMPLEXITY
In this section we analyze the complexity of finding strategies

according to these solution concepts.

4.1 Nash equilibrium
Finding a Nash equilibrium when Player l either has informa-

tion sets containing more than one node, or has lookahead at least
2, is PPAD-hard. This is because finding a Nash equilibrium in
a 2-player general-sum normal-form game is PPAD-hard [3], and
any such game can be converted to a depth 2 extensive-form game
(where the second player does not know what the first player moved),
where the general-sum payoffs are the evaluation function values.

If the limited-lookahead player only has singleton information
sets and lookahead 1, an optimal strategy can be trivially computed
in polynomial time in the size of the game tree for the limited-
lookahead player (without even knowing the other player’s strategy
σr) because for each of her information sets, we simply have to pick
an action that has highest immediate heuristic value. To get a Nash
equilibrium, what remains to be done is to compute a best response
for the rational player, which can also be easily done in polynomial
time [8].

4.2 Commitment strategies
Next we study the complexity of finding commitment strategies.

The complexity depends on whether the game has incomplete in-
formation (information sets that include more than one node) for
the limited-lookahead player, how far that player can look ahead,
and how she breaks ties in her action selection.
No information sets, lookahead 1, static tie-breaking As for the
Nash equilibrium case, if the limited-lookahead player only has sin-
gleton information sets and lookahead 1, an optimal strategy can
be trivially computed in polynomial time. We can use the same ap-
proach, except that the specific choice among the actions with high-
est immediate value is dictated by the tie-breaking rule. With this
strategy in hand, finding a utility-maximizing strategy for Player r
again consists of computing a best response.
No information sets, lookahead 1, adversarial tie-breaking When
ties are broken adversarially, the choice of response depends on the
choice of strategy for the rational player. The set of optimal actions
A∗s for any node s ∈ Sl can be precomputed, since Player r does
not affect which actions are optimal. Player l will then choose ac-
tions from these sets to minimize the utility of Player r. We can
view the restriction to a subset of actions as a new game, where
Player l is a rational player in a zero-sum game. An optimal strat-
egy for Player r to commit to is then a Nash equilibrium in this
smaller game. This is solvable in polynomial time by an LP that is
linear in the size of the game tree [30], and algorithms have been
developed for scaling to large games [7, 33, 15, 12, 13, 6, 5].
No information sets, lookahead 1, favorable tie-breaking In this
case, Player l picks the action from A∗s that maximizes the utility
of Player r. Perhaps surprisingly, computing the optimal solution
in this case is harder than when facing an adversarial opponent. All
our hardness proofs, presented in the appendix, are by reduction
from 3SAT.

DEFINITION 1. A 3SAT instance consists of a tuple (V,C). V
is a set of n Boolean variables, and C is a set of m clauses of
the form (l1 ∨ l2 ∨ l3) where each li represents a literal requiring
some variable to be true or false.

THEOREM 1. Computing a utility-maximizing strategy for the
rational player to commit to is NP-hard if the limited-lookahead
player breaks ties in favor of the rational player.

PROOF. We reduce from 3SAT. A picture illustrating our reduc-
tion is given in Figure 1, and a description is given below.

Let the root node be a chance node. It chooses with equal prob-
ability between |C| child nodes, each representing a clause. Each
such descendant clause node is a singleton information set belong-
ing to Player l. Each clause node has three actions, representing the
three literals in the clause. Each such action leads to a node repre-
senting that literal. Player l gets the same value from each action
and is therefore indifferent. Player r acts at each literal node, with
all literal nodes representing the same variable being in an infor-
mation set together. Thus, Player r has an information set for each
variable. At each variable information set, there is a true and false
action. For a given literal node in some variable information set, the
true action leads a payoff of 1 if the literal requires the variable to
be true, and 0 otherwise. Similarly, the false action leads to a pay-
off of 1 if the literal requires the variable to be false, and 0 other-
wise.

The decision problem is then: does there exist a strategy for
Player r with expected payoff 1? This is the case if and only if
the strategy for Player r represents a satisfying assignment to V,C,
as each clause must have some action available where a satisfying
assignment for the literal is chosen with probability 1.
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Figure 1: The game tree in our proof of Theorem 1. Dashed lines
denote information sets.
No information sets, lookahead > 1, favorable tie-breaking It is
NP-hard to compute an optimal strategy to commit to in extensive-
form games when both players are rational [17]. That was proven
by reducing from knapsack to a 2-player perfect-information game
of depth 4. This immediately gives us two results: (1) finding an
optimal strategy for Player r to commit to is NP-hard if Player l
has lookahead at least 4, and (2) computing an optimal strategy to
commit to for Player l is NP-hard even with lookahead 1. Their
result also implies NP-hardness of computing a strategy to commit
to for the rational player, if our l player has lookahead of at least 4.
We tighten this to lookahead 2:

THEOREM 2. Computing a utility-maximizing strategy for the
rational player to commit to is NP-hard if the limited lookahead
player has lookahead at least 2.

PROOF. We reduce from 3SAT. We use the same reduction as
for Theorem 1, except that at each clause node, we also add an
“unsatisfied” action that leads directly to a leaf node with payoff 0
for Player r and payoff 2

3
for Player l.

For all leaf nodes under a variable node, we set the payoff to 1
for Player r, and 0 or 1 for Player l, for when the leaf represents
the ancestor literal being unsatisfied or satisfied, respectively. The
modifications are shown for a single clause in Figure 2.

The question is whether Player r can compute a strategy such
that Player l selects a literal action for each clause, assuming that
Player l breaks ties such that the unsatisfied action is least preferred.
For a given variable, choosing a strategy strictly between 0, 2

3
for



the two actions leads to zero utility gain, since Player 2 will then
always prefer the unsatisfied actions over any literal belonging to
the variable. Thus we can assume that Player r plays a pure strategy,
since at most one action can have its probability set high enough to
yield utility gain. Now, for each clause, Player l will only choose a
literal action if that variable is set to the correct value to satisfy the
clause. Thus, if Player r can compute a strategy that gives expected
utility 1, each clause node must have at least one variable with a
satisfying assignment.
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Figure 2: The clause modification in our proof of Theorem 2.
Limited-lookahead player has information sets When the lim-
ited lookahead player has information sets, we show that comput-
ing a strategy to commit to is NP-hard:

THEOREM 3. Computing a utility-maximizing strategy for the
rational player to commit to is NP-hard if the limited lookahead
player has information sets of at least size 6.

PROOF. We reduce from 3SAT. Let the root node be a chance
node. It chooses with equal probability between all variable and
clause pairs v, c such that v ∈ c. Player r acts at each child node,
being able to distinguish only which variable was chosen. For each
information set, Player 1 can choose between a true and a false ac-
tion, representing setting the associated variable to true or false, re-
spectively. At the next level where Player l is active. The informa-
tion sets at the level are constructed as follows. For each c ∈ C
an information set is constructed, containing all nodes represent-
ing Player r choosing both true and false for each v ∈ c. For each
information set representing some clause c, Player l has 4 actions.
First is an unsat action, leading to payoff 0 for Player 1 and payoff
1 for Player l, no matter which node in the information set play has
reached. Second, an action for each variable v ∈ c leading to pay-
off 1 for Player r, and payoff 3 to Player l if play reached a node
representing v with true or false chosen such that it satisfies c, and
payoff 0 for all other nodes in the information set.

We claim that there is a satisfying assignment if and only if
Player 1 can commit to a strategy with expected payoff 1. Let
φ : V → {true, false} be a satisfying assignment to V,C. Let
Player r deterministically pick actions at each variable informa-
tion set according to φ. If play reaches a singleton node, Player l
has only one action available, guarateeing payoff 1. If play reaches
some information set representing a clause c, Player l has expected
payoff of 3 · 1

3
when picking any action representing a satisfied lit-

eral l ∈ c, as the conditional probability of being at a node repre-
senting v(l) is 1

3
, and Player r chooses the satisfying action with

probability 1. Since Player l breaks ties such that unsatisfied actions
are least preferred, she will pick an action representing a variable
for each information set, yielding payoff 1 to Player r. This covers
all possible outcomes, giving an expected payoff of 1 to Player r.

Given some strategy for Player r that gives payoff 1 in expec-
tation, we show how to construct a satisfying assignment to V,C.
For a strategy to have payoff 1, Player l must be choosing variable
actions at each information set for some clause c. This is the case
if and only if Player r selects the satisfying truth value with proba-
bility 1 for some v ∈ c, since the expected payoff of taking a vari-
able action is otherwise strictly smaller than the unsatisfied action.
This leads directly to a satisfying assignment, by choosing the cor-
responding value assignment for each action that is selected with

probability 1, and choosing an arbitrary assignment for every other
variable.
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Figure 3: The game tree for our proof of Theorem 3.

5. ALGORITHMS
We showed how to compute an optimal strategy to commit to

in polynomial time when the limited-lookahead player has no in-
formation sets, lookahead 1, and ties are broken either by a static
scheme or adversarially. We then showed hardness for all other
cases. In this section we will develop worst-case exponential-time
algorithms for solving the hard commitment-strategy cases. Here
we focus on commitment strategies rather than the hard Nash equi-
librium problem classes because Player l playing a Nash equilib-
rium strategy would require the limited-lookahead player l to rea-
son about the whole game for the opponent’s strategy, which rings
contrary to the limited-lookahead assumption. Further, optimal strate-
gies to commit to are desirable for applications such as biological
games (because evolution is responding to what we as the “steerer"
are doing) and security games (where the defender typically gets to
commit to a strategy).
Favorable tie breaking

We start with the case where the limited-lookahead player breaks
ties in the rational player’s favor. We use the idea of the sequence
form [26, 9, 10], where a variable is introduced for each sequence
(information set-action pair) of actions a given player can take. The
insight is that in perfect-recall games, a given action at some infor-
mation set for Player i is reached by a unique sequence of actions of
Player i. This is exploited to represent the probability πσi (I)σ(I, a)
of a given action a ∈ AI being realized by a variable xa. To ensure
that a valid set of realization probabilities is computed, the con-
straint xa =

∑
a′∈AI′

xa′ is introduced for all information sets I ′

and actions a such that a is the last action by Player i on the path
to I ′. A behavioral strategy is then obtained simply by normalizing
by the realization probability of the last action a: σ(I ′, a′) =

xa′
xa

.
With this formulation, duality is used to obtain a linear program for
computing Nash equilibria in zero-sum extensive-form games.

In our case, we cannot apply duality. Instead, we work directly
on the sequence form variables for both players. For Player r, we
introduce realization variables xa ∈ [0, 1] for each action a. For
Player l, we introduce Boolean realization variables ya ∈ {0, 1}
for each action a, as there always exists a pure strategy that maxi-
mizes utility, given a strategy for the other player. This is a key de-
viation from the traditional sequence form, where the variables are
real valued.

For any node s, we have π1(s) = xa, π2(s) = ya′ where actions
a, a′ are the last actions on the path to s for Player r and Player l,
respectively. Using this notation, we introduce a variable rz repre-
senting the expected utility from each leaf node z. The expected
utility of a leaf node requires computing the probability of it being
reached π0(z) ·π1(z) ·π2(z), which is a non-linear function. How-
ever, since Player l uses only probabilities 0 and 1, we can separate
this into two linear single-variable constraints

rz ≤ u1(z)π0(z)π1(z) and rz ≤ u1(z)π2(z)



The objective function is then simply
∑
z∈Z rz .

Finally, we must ensure that the strategy chosen for Player lmax-
imizes her utility according to the evaluation function at each infor-
mation set I ∈ I2. Let SkI,a be the set of nodes at depth k below
I , reachable from information set I when taking action a. Letting
πσ(s) denote the probability of reaching s under optimal hypothet-
ical play, we introduce the following constraint for all a, a′ ∈ AI :∑

s∈Sk
I,a

πσ(s)h(s) ≥
∑

s∈Sk
I,a′

πσ(s)h(s)−M(1− ya) (1)

The constraint requires that the weighted sum over descendant node
evaluation function values is at least as high at a as at any other
action a′. The negative term ensures that the constraint is active
only if the action is chosen (ya = 1) by subtracting a sufficiently
large number M otherwise.

The number of MIP matrix entries needed to implement this
sparsely isO(

∑
I∈Il
|AI |·maxs∈S |As|min{k,k′}), where k′ is the

maximum depth of the subtrees rooted in I . We present the details
on the implementation and the proof of the MIP size in the proof
of the similar case for Theorem 4. For many games, the lookahead
depth k, maximum action set size, and number of information sets
would all be much smaller than the size of the game tree |S|. For
example, in the largest game that we investigate in the experimen-
tal section, the above expression, which is an upper bound, yields
448 entries. The game tree has 199 nodes. The MIP is thus almost
linear in the size of the game tree for many realistic games.
Static tie-breaking When the limited-lookahead player breaks ties
according to some static scheme �, we can use the same approach
as for favorable tie breaking, except that Equation 1 has to be a strict
inequality for any a, a′ such that a′ � a. This can be achieved in a
MIP by subtracting sufficiently small ε.
Adversarial tie breaking When the limited-lookahead player breaks
ties adversarially, we wish to compute a strategy that maximizes the
worst-case best response by the limited-lookahead player.

For arguments sake, say that we were given A, which is a fixed
set of pairs, one for each information set I of the limited-lookahead
player, consisting of a set of optimal actionsA∗I and one strategy for
hypothetical play σIl at I . Formally,A =

⋃
I∈Il
〈A∗I , σIl 〉. To make

these actions optimal for Player l, Player r must choose a strategy
such that all actions inA are best responses according to the evalu-
ation function of Player l. Formally, for all a, a∗ ∈ A, a′ /∈ A (let-
ting π(s) denote probabilities induced by σIl for the hypothetical
play between I, a and s):∑

s∈Sk
I,a

π(s) · h(s) >
∑

s∈Sk
I,a′

π(s) · h(s) (2)

∑
s∈Sk

I,a

π(s) · h(s) =
∑

s∈Sk
I,a∗

π(s) · h(s) (3)

Player r has to choose a worst-case utility-maximizing strategy that
satisfies Equations 2 and 3, and Player l has to compute a (possi-
bly mixed) strategy from A such that the utility of Player r is min-
imized. We show that this problem can be solved by LP 8.

THEOREM 4. For some fixed choice of actionsA to force Player
l to play, Nash equilibria of the induced game can be computed
in polynomial time by a linear program that has size O(|S|) +

O(
∑
I∈Il
|AI | ·maxs∈S |As|min{k,k′}).

To prove this theorem, we first design a series of linear programs
for computing best responses for the two players. We will then use
duality to prove the theorem statement.

In the following, it will be convenient to change to matrix-vector

notation. Our notation will be analogous to that of von Stengel [30],
with some extensions. LetA = −B be matrices describing the util-
ity function for Player r and the maximization problem of Player l
over A, respectively. Rows are indexed by Player r sequences, and
columns by Player l sequences. For sequence form vectors x, y,
the objectives to be maximized for the players are then xAy, xBy.
Matrices E,F are used to describe the sequence form constraints
for Player r and l, respectively. Rows correspond to information
sets, and columns correspond to sequences. Letting e, f be stan-
dard unit vectors of length |Ir| , |Il|, respectively, the constraints
Ex = e, Fy = f describe the sequence form constraint for the re-
spective players. Given a strategy x for Player r satisfying Equa-
tions 2 and 3 for someA, the optimization problem for Player l be-
comes choosing a vector of y′ representing probabilities for all se-
quences in A that minimize the utility of Player r. Letting a prime
superscript denote the restriction of each matrix and vector to se-
quences inA, this gives the following primal (4) and dual (5) LPs:

max
y′

(xTB′)y′

F ′y′ = f ′

y ≥ 0

(4)

min
q′

q′T f ′

q′TF ′ ≥ xTB′ (5)

Where q′ is a vector with |A|+ 1 dual variables. Given some strat-
egy y′ for Player l, Player r maximizes utility among strategies that
induce A. This gives the following best-response LP for Player r:

max
x

xT (Ay′)

xTET = eT

x ≥ 0

xTH¬A − xTHA ≤ −ε

xTGA∗ = xTGA

(6)

Where the last two constraints encode equations 2 and 3, respec-
tively. The dual problem uses the unconstrained vectors p, v and
constrained vector u and looks as follows

min
p,u,v

eT p− ε · u

ET p+ (H¬A −HA)u+ (GA∗ −GA)v ≥ A′y′

u ≥ 0

(7)

We can now merge the dual (5) with the constraints from the pri-
mal (6) to compute a solution where Player r chooses x, which she
will choose to minimize the objective of (5), a minmax strategy:

min
x,q′

q′T f ′

q′TF ′ − xTB′ ≥ 0

−xTET = −eT

x ≥ 0

xTHA − xTH¬A ≥ ε

xTGA − xTGA∗ = 0

(8)

Taking the dual of this gives

max
y′,p

−eT p+ ε · u

−ET p+ (HA −H¬A)u+ (GA −GA∗)v ≤ B′y′

F ′y′ = f ′

y, u ≥ 0

(9)

We are now ready to prove Theorem 4.



PROOF. The LPs are (8) and (9). We will use duality to show
that they provide optimal solutions to each of the best response
LPs. Since A = −B, the first constraint in (9) can be multiplied
by−1 to obtain the first constraint in (7) and the objective function
can be transformed to that of (7) by making it a minimization. By
the weak duality theorem, we get the following inequalities

q′T f ′ ≥ xTB′y′; by LPs 4 and 5

eT p− ε · u ≥ xTA′y′; by LPs 6 and 7

We can multiply the last inequality by −1 to get:

q′T f ′ ≥ xTB′y′ = −xTA′y′ ≥ −eT p+ ε · u (10)

By the strong duality theorem, for optimal solutions to LPs 8 and 9
we have equality in the objective functions q′T f ′ = −eT p + εu
which yields equality for Equation 10, and thereby equality for
the objective functions in LPs 4, 5 and for 6, 7. By strong duality,
this implies that any primal solution x, q′ and dual solution y′, p to
LPs 8 and 9 yields optimal solutions to the LPs 4 and 6. Both play-
ers are thus best responding to the strategy of the other agent, yield-
ing a Nash equilibrium.

Conversely, any Nash equilibrium gives optimal solutions x, y′

for LPs 4 and 6. With corresponding dual solutions p, q′, equality
is achieved in Equation 10, meaning that LPs 8 and 9 are solved
optimally.

It remains to show the size bound for LP 8. Using sparse repre-
sentation, the number of non-zero entries in the matricesA,B,E, F
is linear in the size of the game tree.

The constraint set xTHA − xTH¬A ≥ ε, when naively imple-
mented, is not. The value of a deactivated sequence at some infor-
mation set I is dependent on the choice among the cartesian prod-
uct of choices at each information set I ′ encountered in hypothet-
ical play below it. In practice we can avoid this by having a real-
valued variable vdI (I ′) representing the value of I ′ in lookahead
from I , and introducing constraints

vdI (I ′) ≥ vdI (I ′, a)

for each a ∈ I ′, where vdI (I ′, a) is a variable representing the value
of taking a at I ′. If there are more information sets below I ′ where
Player l plays, before the lookahead depth is reached, we recur-
sively constrain vdI (I ′, a) to be:

vdI (I ′, a) ≥
∑
Ǐ∈D

vdI (Ǐ) (11)

whereD is the set of information sets at the next level where Player
l plays. If there are no more information sets where Player l acts,
then we constrain vdI (I ′, a):

vdI (I ′, a) ≥
∑

s∈Sk
I′,a

πσ−lh(s) (12)

Setting it to the probability-weighted heuristic value of the nodes
reached below it.

Using this, we can now write the constraint that a dominates all
a′ ∈ I, a′ /∈ A as: ∑

s∈Sk
I,a

πσ(s)h(s) ≥ vdI (I)

There can at most be O(
∑
I∈Il
|AI |) actions to be made domi-

nant. For each action at some information set I , there can be at most
O(maxs∈S |As|min{k,k′}) entries over all the constraints, where k′

is the maximum depth of the subtrees rooted at I . This is because
each node at the depth the player looks ahead to has its heuristic

value added to at most one expression.
For the constraint set xTGA−xTGA∗ = 0, the choice of hypo-

thetical plays has already been made for both expressions, and so
we have the constraint∑

s∈Sk
I,a

πσ(s)h(s) =
∑

s∈Sk
I,a′

πσ
′
(s)h(s)

for all I ∈ Il, a, a′ ∈ I, {a, σl}, {a′, σl,′} ∈ A, where

σ = {σ−l, σl}, σ′ = {σ−l, σl,′}

There can at most be
∑
I∈Il
|AI |2 such constraints. Which is dom-

inated by the size of the previous constraint set.
Summing up gives the desired bound.

In reality we are not given A. To find a commitment strategy
for Player r, we could loop through all possible structuresA, solve
LP 8 for each one, and select the one that gives the highest value.

We show that this can be done without such exhaustive enumer-
ation. We introduce a MIP formulation that picks the optimal in-
duced game A. The MIP is given in (13). We introduce Boolean
sequence-form variables that denote making sequences suboptimal
choices. These variables are then used to deactivate subsets of con-
straints, so that the MIP branches on formulations of LP 8, i.e.,
what goes into the structure A. The size of the MIP is of the same
order as that of LP 8.

min
x,q,z

qT f

qTF ≥ xTB − zM
Ex = e

xTHA ≥ xTH¬A + ε− (1− z)M

xTGA = xTGA∗ ± (1− z)M∑
a∈AI

za ≥ za′

x ≥ 0, z ∈ {0, 1}

(13)

The variable vector x contains the sequence form variables for
Player r. The vector q is the set of dual variables for Player l. z is a
vector of Boolean variables, one for each Player l sequence. Setting
za = 1 denotes making the sequence a an inoptimal choice. The
matrixM is a diagonal matrix with sufficiently large constants (e.g.
the smallest value in B) such that setting za = 1 deactivates the
corresponding constraint. Similar to the favorable-lookahead case,
we introduce sequence form constraints

∑
a∈AI

za ≥ za′ where
a′ is the parent sequence, to ensure that at least one action is picked
when the parent sequence is active. We must also ensure that the
incentivization constraints are only active for actions in A:

xTHA − xTH¬A ≥ ε− (1− z)M (14)

xTGA − xTGA∗ = 0± (1− z)M

For diagonal matrices M with sufficiently large entries. Equality is
implemented with a pair of inequality constraints. The ± denotes
adding or subtracting, respectively, for the two inequalities.

The values of each column constraint in equation 14 is imple-
mented by a series of constraints. We add Boolean variables σIl (I ′, a′)
for each information set action pair I ′, a′ that is potentially chosen
in hypothetical play at I . Using our regular notation, for each a, a′

where a is the action to be made dominant, the constraint is imple-
mented by:∑

s∈Sk
I,a

vi(s) ≥ vdI (I), vi(s) ≤ σIl (I ′, a′) ·M (15)



where the latter ensures that vi(s) is only non-zero if chosen in hy-
pothetical play. We further need the constraint vi(s) ≤ πσ−l(s)h(s)

to ensure that vi(s), for a node s at the lookahead depth, is at most
the heuristic value weighted by the probability of reaching s.

Since we have just modified existing constraints, and added vari-
ables and entries corresponding to the number of sequences and in-
formation sets, the size of this MIP has size on the order of the size
of LP 8.

6. EXPERIMENTS
In this section we experimentally investigate how much utility

can be gained by optimally exploiting a limited-lookahead player.
We take a conservative approach, and assume that ties are bro-
ken adversarially. We conduct experiments on Kuhn poker [14], a
canonical testbed for game-theoretic algorithms, and a larger sim-
plified poker game that we call KJ.

Kuhn poker consists of a three-card deck: king, queen, and jack.
Each player antes 1. Each player is then dealt one of the three cards,
and the third is put aside unseen. A round of betting occurs:
• Player 1 can check or bet 1.

– If Player 1 checks Player 2 can check or raise 1.
∗ If Player 2 checks there is a showdown.
∗ If Player 2 raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot.
· If Player 1 calls there is a showdown for the

pot.
– If Player 1 raises Player 2 can fold or call.
∗ If Player 2 folds Player 1 takes the pot.
∗ If Player 2 calls there is a showdown.

In a showdown, the player with the higher card wins the pot.
In KJ, the deck consists of two kings and two jacks. Each player

antes 1. A private card is dealt to each, followed by a betting round
(p = 2), then a public card is dealt, follower by another betting
round (p = 4). If no player has folded, a showdown occurs. Each
round of betting looks as follows:
• Player 1 can check or bet p.

– If Player 1 checks Player 2 can check or raise p.
∗ If Player 2 checks the betting round ends.
∗ If Player 2 raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot.
· If Player 1 calls the betting round ends.

– If Player 1 raises Player 2 can fold or call.
∗ If Player 2 folds Player 1 takes the pot.
∗ If Player 2 calls the betting round ends.

Showdowns have two possible outcomes: One player has a pair, or
both players have the same private card. For the former, the player
with the pair wins the pot. For the latter the pot is split.

Kuhn poker has 55 nodes in the game tree and 13 sequences
per player. The KJ game tree has 199 nodes, and 57 sequences per
player.

To investigate the value that can be derived from exploiting a
limited-lookahead opponent, a node evaluation heuristic is needed.
In this work we consider heuristics derived from a Nash equilib-
rium. For a given node, the heuristic value of the node is simply the
expected value of the node in (some chosen) equilibrium. This is
arguably a conservative class of heuristics, as a limited-lookahead
opponent would not be expected to know the value of the nodes in
equilibrium. Even with this form of evaluation heuristic it is pos-
sible to exploit the limited-lookahead player, as we will show. We
will also consider Gaussian noise being added to the node eval-
uation heuristic, more realistically modeling opponents who have
vague ideas of the values of nodes in the game. Formally, let σ be
an equilibrium, and i the limited-lookahead player. The heuristic

value h(s) of a node s is:

h(s) =

{
ui(s) if s ∈ Z∑
a∈As

σ(s, a)h(tsa) otherwise
(16)

We consider two different noise models. The first adds Gaussian
noise with mean 0 and standard deviation γ independently to each
node evaluation, including leaf nodes. Letting µs be a noise term
drawn i.i.d fromN (0, γ): ĥ(s) = h(s)+µs. The second, more re-
alistic, model adds error cumulatively, with no error on leaf nodes:

h̄(s) =

{
ui(s) if s ∈ Z[∑

a∈As
σ(s, a)h̄(tsa)

]
+ µs otherwise

(17)

Using the MIP described in the Algorithms section, we com-
puted optimal strategies for the rational player in Kuhn poker and
KJ. The MIP models were solved by CPLEX version 12.5. The re-
sults are given in Figure 4. The x-axis is the noise parameter γ for
the standard deviation in ĥ and h̄. The y-axis is the corresponding
utility for the rational player, averaged over at least 1000 runs for
each tuple 〈game, choice of rational player, lookahead, standard
deviation〉. Each figure contains plots for the limited-lookahead
player having lookahead 1 or 2, and a baseline for the value of the
game in equilibrium without a limit on lookahead. At each point,
the error bars show the standard deviation.

Figures 4a and b show the results for using evaluation function ĥ
in Kuhn poker, with the rational player in plot a and b being Player
1 and 2, respectively. For rational Player 1, we see that, even with
no noise in the heuristic (i.e., the limited-lookahead player knows
the value of each node in equilibrium), it is possible to exploit
the limited-lookahead player if she has lookahead depth 1. (With
lookahead 2 she achieves the value of the game.) For either player
and both amounts of lookahead, the exploitation potential steadily
increases as noise is added.

Figures 4c and d show the same variants for KJ. Here, looka-
head 2 is actually worse for the limited-lookahead player than
lookahead 1. To our knowledge, this is the first known incomplete-
information lookahead pathology. Such pathologies have long been
known in perfect-information games [1, 22, 20], and understanding
them remains an active area of research [18, 21, 31]. This version of
the node heuristic does not have increasing visibility: node evalua-
tions do not get more accurate toward the end of the game. Our ex-
periments on KJ with h̄ in Figures 4g and h do not have this pathol-
ogy, and h̄ does have increasing visibility.

Perhaps surprisingly, Figure 5 shows a simple subtree (that could
be attached to any game tree) where deeper lookahead can make
the agent’s decision arbitrarily bad, even when the node evaluation
function is the exact expected value of a node in equilibrium!

We now go over the example of Figure 5. Assume without loss of
generality that all payoffs are positive in some game. We can then
insert the subtree in Figure 5 as a subgame at any node belonging
to P1, and it will be played with probability 0 in equilibrium, since
it has expected value 0. Due to this, all strategies where Player 2
chooses up can be part of an equilibrium. Assuming that P2 is the
limited-lookahead player and minimizing, for large enough α, the
node labeled P1∗ will be more desirable than any other node in the
game, since it has expected value −α according to the evaluation
function. A rational player P1 can use this to get P2 to go down at
P2∗, and then switch to the action that leads to α. This example is
for lookahead 1, but we can generalize the example to work with
any finite lookahead depth: the node P1∗ can be replaced by a sub-
tree where every other leaf has payoff 2α, in which case P2 would
be forced to go to the leaf with payoff α once down has been cho-
sen at P2∗.

Figures 4e and f show the results for Kuhn with h̄. These are very
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(b) Kuhn Player 2, ĥ
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(c) KJ Player 1, ĥ
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(d) KJ Player 2, ĥ
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(e) Kuhn Player 1, h̄
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(f) Kuhn Player 2, h̄
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(g) KJ Player 1, h̄
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Figure 4: Winnings in Kuhn poker and KJ for the rational player as
Player 1 and 2, respectively, for varying evaluation function noise.
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Figure 5: A subtree that exhibits lookahead pathology.

similar to the results for ĥ, with almost identical expected utility for
all scenarios. Figures 4g and h, as previously mentioned, show the
results with h̄ on KJ. Here we see no abstraction pathologies, and
for the setting where Player 2 is the rational player we see the most
pronounced difference in exploitability based on lookahead.

7. CONCLUSIONS AND FUTURE WORK
We initiated the study of limited lookahead in incomplete-infor-

mation games. As a generalization of limited lookahead in complete-
information games, we find it interesting in its own right. The game-
theoretic reasoning over limited lookahead is another novel aspect.
The model also has applications, for example in security games and
in steering evolution/adaptation in biomedical games.

We characterized the complexity of finding a Nash equilibrium
and optimal strategy to commit to for either player. Figure 6 sum-

marizes those results.

Information sets

{PPAD,NP}-hardLookahead depth > 1

Solution concept

Tie-breaking rule

NP-hardP

Adversarial, static Favorable

P

Equilibrium Commitment

{PPAD,NP}-hard

yes no

no yes

Figure 6: Our complexity results. {PPAD,NP}-hard indicates that
finding a Nash equilibrium is PPAD-hard and finding an optimal
strategy to commit to is NP-hard. P indicates polynomial time.

We then designed several MIPs for computing optimal strategies
to commit to for the rational player in the general NP-hard cases.
First, we showed that the sequence form can be used to design a
MIP that has size almost linear in the size of the game tree for
many practical games, when ties are broken statically or in favor of
the rational player. We then showed that when ties are broken ad-
versarially, the problem reduces to choosing the best among a set of
two-player zero-sum games (the tie-breaking being the opponent),
and for each of those games the optimal strategy can be computed
with an LP. We then introduced a MIP formulation that branches
on these games to find the optimal solution.

We experimentally studied the impact of limited lookahead in
two poker games. We demonstrated that it is possible to achieve
large utility gains by exploiting a limited-lookahead opponent. As
one would expect, the limited-lookahead player often obtains the
value of the game if her heuristic node evaluation is exact (i.e.,
it gives the expected values of nodes in the game tree for some
equilibrium)—but we provided a counterexample that shows that
this is not sufficient in general. Finally, we studied the impact of
noise in those estimates, and different lookahead depths. While
lookahead 2 usually outperformed lookahead 1, we uncovered an
incomplete-information game lookahead pathology: deeper looka-
head can hurt the limited-lookahead player. We demonstrated how
this can occur with any finite depth of lookahead, even if the limited-
lookahead player’s node evaluation heuristic returns exact values
from an equilibrium.

Our algorithms in the NP-hard adversarial tie-breaking setting
scaled to games with hundreds of nodes. For some practical set-
tings, significantly more scalability will be needed. There are at
least two exciting future directions toward achieving this. One is to
design faster—optimal or good-enough—algorithms. The other is
designing abstraction techniques for the limited-lookahead setting.
The latter could be used with our current algorithms, or in conjunc-
tion with faster future algorithms. In extensive-form game solving
with rational players, abstraction plays an important role in large-
scale game solving [27]. Theoretical solution quality guarantees
have recently been achieved [29, 16, 12, 13]. Limited-lookahead
games have much stronger structure, especially locally around an
information set, and it may be possible to utilize that to develop
abstraction techniques with significantly stronger solution qual-
ity bounds. Also, leading practical game abstraction algorithms
(e.g., [5]), while theoretically unbounded, could immediately be
used to investigate exploitation potential in larger games.

It would also be interesting to explore conditions under which
lookahead pathologies occur, and map out similarities and dissim-
ilarities to the pathologies in perfect-information games. Finally,
uncertainty over h is an important future research direction. This
would lead to more robust solution concepts, thereby alleviating
the pitfalls involved with using an imperfect estimate of h.
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