Optimization and Elicitation with the Maximin Utility
Criterion

Paolo Viappiani! and Christian Kroer?

Abstract. We investigate robust decision-making under utility un-
certainty, using the maximin criterion, which optimizes utility for the
worst case setting. We show how it is possible to efficiently compute
the maximin optimal recommendation in face of utility uncertainty,
even in large configuration spaces. We then introduce a new decision
criterion, setwise maximin utility (SMMU), for constructing optimal
recommendation sets: we develop algorithms for computing SMMU,
and prove (analogously to previous results related to regret-based and
Bayesian elicitation) that SMMU determines choice sets for queries
that are myopically optimal. We also present experimental results
showing performance of SMMU on randomly generated elicitation
problems.

1 Introduction

Learning the preferences of the user [10] is an important problem
in many domains, including decision support and recommender sys-
tems, personal agents and cognitive assistants. Because acquiring
user preferences is expensive (with respect to time and cognitive
cost), it is essential to provide techniques that can reason with par-
tial preference (utility) information, and that can effectively elicit the
most relevant preference information.

Following recent works in Al, we cast decision-making and elici-
tation as a problem of optimization under uncertainty. Adaptive util-
ity elicitation [5] tackles the challenges posed by preference elicita-
tion by representing the system knowledge about the user in form of
beliefs, that are updated following user responses. Elicitation queries
can be chosen adaptively given the current belief. In this way, one
can often make good (or even optimal) recommendations with sparse
knowledge of the user’s utility function.

In this paper, we investigate the problem of producing robust rec-
ommendations using the maximin criterion. Maximin is the most pes-
simistic decision criterion; the recommended decision or option is the
one associated with the highest utility in the worst case.

We examine the strict uncertainty setting: all we are given is a
set of constraints that encode the possible utility functions (usually
obtained through some form of user feedback, such as responses to
elicitation queries of the type: “Which of these products do you pre-
fer ?7). We argue that maximin can be adopted as a suitable robust
decision criterion for decision making in the presence of such utility
function uncertainty. Furthermore, we extend this idea to sets, defin-
ing the setwise maximin utility criterion, and we discuss the problem
of interactive elicitation (which can be viewed as active preference
learning). Finally, we show how linear and mixed integer program-
ming techniques can be used to efficiently optimize both singleton

1 Aalborg University, Denmark, email: paolo@cs.aau.dk
2 Carnegie Mellon University, USA, email: ckroer@cs.cmu.edu

recommendations and sets in large configuration spaces.

1.1 Assumptions

We assume a recommendation system is charged with the task of
recommending an option to a user in some multiattribute space, for
instance, the space of possible product configurations from some do-
main (e.g., computers, cars, apartment rental, etc.). Products are char-
acterized by a finite set of attributes X = {X1,...Xn}, each with
finite domains Dom (X;). Let X C Dom(X) denote the set of fea-
sible configurations. For instance, attributes may correspond to the
features of various apartments, such as size, neighborhood, distance
from public transportation, etc., with X defined either by constraints
on attribute combinations (e.g., constraints on computer components
that can be put together), or by an explicit database of feasible con-
figurations (e.g., a rental database).

The user has a utility function v : Dom(X) — R. In what follows
we will assume either a linear or additive utility function depending
on the nature of the attributes [8]. In both additive and linear models,
u can be decomposed as follows®:

u(x) = Zfz(wb) = Z)\va(ﬂ@z)

where each local utility function f; assigns a value to each ele-
ment of Dom(X;). In classical utility elicitation, these values can
be determined by assessing local value functions v; over Dom(X;)
that are normalized on the interval [0, 1], and importance weights \;
(3=; A = 1) for each attribute [7, 8]. This sets fi(x:) = Aivi(z:)
and ensures that global utility is normalized on the interval [0, 1]. A
simple additive model in the rental domain might be:

u(Apt) = f1(Size) + f2(Distance) + f3s(Nbrhd)

When Dom(X;) is drawn from some real-valued set, we often as-
sume that v; (hence f;) is linear in X2

We note that our framework subsumes the case of “unfactored”
utilities (the utility of an option is an unknown latent value that does
not factor into attributes or features); this case can be modeled by
considering a parameter to represent the utility of the option.

u(z'; w) = w; (1)

Vector w = (w1, ..., wy) is then composed of the utilities for each
option. Prior knowledge can provide lower bounds and upper bounds

3 In our notation, we use bold lowercase for vectors

4 Qur presentation relies heavily on the additive assumption, though our ap-
proach is easily generalized to more general models such as GAI [7, 4]. The
assumption of linearity is simply a convenience; nothing critical depends on
it.

for w1, ..., wn. W is then a “hyper rectangular” region of possible
utility values. Unfactored models are of limited applicability. One
main drawback is that we need one utility parameter for each avail-
able option. The advantages of a factored (multi-attribute) utility rep-
resentation is that preference statements, such as responses to com-
parison queries between two options x and y, can “generalize” to
other options, that have some features in common.

Since a user’s utility function is not generally known, we write
u(x; w) to emphasize the dependence of u on user-specific parame-
ters. In the additive case, the values f;(z;) over U;{ Dom(X;)} serve
as a sufficient parameterization of w (for linear attributes, a more suc-
cinct representation is possible). The optimal product for the user
with utility parameters w is argmazxexu(x; w). Our goal is to rec-
ommend, or help the user find, an optimal, or near optimal, product.

2 Decision-making with Maximin Utility

Much work in Al, decision analysis and operations research has been
devoted to effective elicitation of preferences [13, 2, 6, 1, 14]. Adap-
tive preference elicitation generally differs from classical utility as-
sessment in that it recognizes that good, even optimal, decisions can
often be recommended with very sparse knowledge of a user’s utility
function [2]; and that the value of information associated with spe-
cific elicitation actions (e.g., queries)—in terms of its impact on de-
cision quality—is often not worth the cost of obtaining it [6, 1]. This
means we must often take decisions in the face of an incompletely
specified utility function.

In this work, we adopt the notion of maximin utility as our deci-
sion criterion for robust decision making under utility function un-
certainty.

Assume that through some interaction with a user, and possibly
using some prior knowledge, we determine that her utility function
w lies in some set W . (The form of W will become clearer when we
discuss elicitation below). We define:

Definition 1 Given a set of feasible utility functions W, the min util-
ity MU) MU (x; W) of x € X is defined as:

MU(x; W) = mivnvu(x; w)

we

Definition 2 The maximin utility MMU (W) of W and the corre-
sponding minimax optimal configuration x3y, are defined as follows:

MMUW) = max min u(x;w)

xeX weWw

max MU (x; W) =
xeX

*

Xy = argmax MU (x; W) = argmax min u(x;w)
xE

xeX weWw

Intuitively, MU (x; W) is the worst-case utility associated with
recommending configuration x; i.e., by assuming an adversary will
choose the user’s utility function w from W to minimize the util-
ity. The maximin optimal configuration x7y is the configuration that
maximizes this minimum utility. Any choice that is not maximin op-
timal has strictly lower utility than x3;, for some w € W.

Maximin utility (as does minimax regret [15]) relies on relatively
simple prior information in the form of bounds or constraints on user
preferences (rather than probabilistic priors); and exact computation
is much more tractable (in contrast with probabilistic models of util-
ity that generally require reasoning with densities that have no closed
form [1, 6]). In configuration problems, optimization over product
space X is often formulated as a CSP or mixed integer program
(MIP). In such domains, maximin utility computation can be for-
mulated as a MIP, and solved practically for large problems using

techniques such as Bender’s decomposition and constraint genera-
tion [2, 4].

3 Optimal Recommendation Sets

In general, there is a tension between recommending the best op-
tions to the user, and acquiring informative feedback from the user.
Since utility is uncertain, there is often value in recommending a set
of options from which the user can choose her most preferred. Pick-
ing a “diverse” set of recommended options increases the odds of
recommending at least one item with high utility. Intuitively, such
a set of “shortlisted” recommendations should include options that
are diverse in the following sense: recommended options should be
highly preferred relative to a wide range of “likely” user utility func-
tions (relative to the current belief) [11, 3]. This stands in contrast to
some recommender systems that define diversity relative to product
attributes [12], with no direct reference to beliefs about user utility.
It is not hard to see that “top £ systems, those that present the k
options with highest expected utility, do not generally result in good
recommendation sets [11].

Among the many possible types of queries, we focus on choice
queries. Such queries are commonly used in conjoint analysis and
product design [9], requiring a user to indicate which choice/product
is most preferred from a set of k options. Hence, we can view any
set of products as either a recommendation set or query (or choice)
set. Given a set, one can ask: what is the value of the set viewed as
recommendation set; or what is its value as a query?

Recently, Viappiani and Boutilier [16, 15] showed how these two
problems are connected to each other, under both a Bayesian frame-
work or when one assumes minimax regret as a criterion. In the fol-
lowing we show the same connection when minimax utility is used
as the decision criterion.

3.1 Setwise Maximin Utility

Suppose we have a slate of k options to present to the user and want
to quantify the minimum utility obtained by restricting the user’s de-
cision to options in that slate. Intuitively, the user may select any of
the k options as being “optimal.” An adversary wanting to minimize
utility should do so assuming that any such choice is possible, as we
allow the user to pick any of the k options. Formally, we choose the
set of k options first, but delay the specific choice from the slate un-
til after the adversary has chosen a utility function w. The maximin
utility is the utility of the best option w.r.t. w in the slate. (To keep
notation to a minimum, we assume Z is restricted to suitable subsets
of X (e.g., of cardinality k) without making this explicit.)

Definition 3 Let W be a feasible utility set, Z C X. Define:

SMU(Z, W) = min max u(x;w)
weW x€Z
SMMU (W) = max min max u(x;w)
ZCX weW x€Z
Zyy = argmax min max u(x;w)

ZCX weW x€Z

The setwise minimum utility(SMU) of a set Z of k options reflects
the intuitions above. Setwise maximin utility (SMMU) is SMU of the
minimax optimal set Zjy, i.e., the set that maximizes SMU (Z, W).

Setwise maximin utility has some intuitive properties. First,
adding new items to a recommendation set cannot decrease SMU:

Observation1 SMU(AUB,W) > SMU(A,W).

Incorporating options that are known to be dominated given W
does not change setwise maximin utility:

Observation 2 If u(a, w) > u(b,w) for some a € Z and all w €
W, then SMU(Z U {b}, W) = SMU(Z, W).

Observation 3 MU and SMU can be explicitly expressed as the
minimization over different utility spaces

MU(A; W1 UW2)=min{ MU (A; W1), MU (A; W2)}
S]WU(I\7 Wi UWQ) :min{SMU(A; I/V1)7 S]WU(A7 Wg)}

The choice of z € Z for SMU is dictated by which x has the
highest utility with respect to the chosen w € W. Due to this, the
different choices of x € Z define a partition of the utility space,
where a partition with respect to a given x is the region of W where
the utility of x is higher than any other option in Z. We make this
partition explicit:

WI(Z — x;] ={w € W : u(xs;w) > u(xj;w) Vi #1i,1 <j <k}

(i.e., the region of w where x; has greater utility than any other
option in Z). The regions W[Z — x;], x; € Z, partition W (we
ignore ties over full-dimensional subsets of W, which are easily dealt
with, but complicate the presentation). We call this the Z-partition of
W. Using the Z-partition, we can rewrite SMU:

Observation4 Let Z = {x1,...,Xx}. Then

SMU(Z,W)=min min
XEZweW[Z—x]

kMU(Xi7W[Z — Xz])

u(x, w)

min
i=1<...<

We use a similar notation to express the combination of two par-
titions: W[Zl — Xi, Zo — Xj] = W[Z1 — Xi] M W[Z2 — Xj].
Using this notation, we observe the following inequality for all 4, j:
(the proof is straightforward from the definition)

Observation 5 Foralli,j € {1...k}:

MU(X¢7W[Z — Xi, Z — Xj] > MU(XZ‘7W[Z — X»L])

3.2 Optimal Myopic Elicitation

Usually, utility information is not readily available, but must be ac-
quired through an elicitation process. Since elicitation can be costly,
it is important to ask queries that elicit the most information. Our set-
wise maximin utility criterion can be used directly for this purpose,
implementing a form of preference-based diversity. This stands in
contrast to “product diversity” typically considered in recommender
systems based on critiquing. And unlike recent work in polyhedral
conjoint analysis [14], which emphasizes volume reduction of the
utility polytope W, our maximin utility-based criterion is sensitive
to the range of feasible products and does not reduce utility uncer-
tainty for its own sake.

Any set Z can be interpreted as a query (or system-generated dy-
namic compound critique): We simply allow the user to state which
of the k elements x; € Z she prefers. We refer to Z interchange-
ably as a query or a choice set. The choice of some x; € Z refines

the set of feasible utility functions W by imposing the & — 1 linear
constraints u(X;; W) > u(x;;w), j # .

When treating Z as a choice set (as opposed to a recommen-
dation set), we are not interested in its maximin utility, but rather
in how much a query response will reduce maximin utility. In our
distribution-free setting, the most appropriate measure is posterior
maximin utility, a measure of the value of information of a query.
Generalizing the pairwise measure of [2], we define:

Definition 4 The worst case posterior maximin utility (WP) of Z =
{x1,...,Xp}is

WP(Z,W) = min[MMU(W[Z — x1]),..., MMU(W[Z — xx])]
which can be rewritten as:

WP(Z,W) = min max min

!
u(x', w)
x€Z x'eX weW[Z—x]

An optimal choice set OptQuery(W) is any Z that maximizes
worst case posterior maximin utility Maz WP (W):

MazWP(W) = max WP(Z, W)
ZCX

Intuitively, each possible response x; to the query Z gives rise to up-
dated beliefs about the user’s utility function. We use the worst-case
response to measure the quality of the query (i.e., the response that
leads to the updated W with lowest maximin utility). The optimal
query is that which maximizes this value. We observe:

Observation 6 WP(Z,W) > SMU(Z,W).

Proof If we consider the definition of WP(Z,W) and the
equation for SMU(Z, W) in observation 4, we see that they are
the same except that WP(Z, W) picks a maximizing x’ € X after
x € Z has been picked. Since X includes all options, x’ can at worst
beequaltox. m

Using this fact, we introduce a transformation that modifies a
given recommendation set Z in such a way that SMU cannot de-
crease and usually increases. This will be used both for proving the
optimality of SMU as a choice set, and as a heuristic for efficiently
generating choice sets. Define the transformation 7" to be a mapping
that updates a given recommendation set Z in the following way: (a)
First we construct the Z partition of W; (b) we then compute the
single recommendation that has maximin utility in each region of the
partition of W; (c) finally, we let 7'(Z) be the new recommendation
set consisting of these new recommendations.

Definition 5 Let Z = {x1,...,xy}. We define

T(Z) = {XWzox1)> - - - XV [Zox] }

Using Observation 3 and Observation 4, we prove the following.

Observation 7 Let Z = {xi,.
partition of W.

. Xy }. Let be W, oy W be any

WP(Z,W) = min MMU(W|[Z — x:])
= H’ljl’l MU(XT/V[ZAX,L]) W[Z — Xl])

=min{ MU (Xjy[z ;s W[Z — xi] " W)}
(2%

In particular; if we consider T(Z) = {x},...,x},} where x; =
Xy (Z—sx,] @nd its induced partition on W, the exapression above
become the following.

WP(Z, W) = min{ MU (xly 7 s, WZ = %, T(Z) = x1]}
i,
Using this, we can now prove the following lemma:

Lemma 1 SMU(T(Z), W) > WP(Z,W)

Proof Let T(Z) = {x},...,X},} where X; = Xjy(z_,,- The pre-
vious observations allow to write WP and SMU compactly

WP(Z,W) = min[MU (x;, W[Z — x;, T(Z) — x}])] (2)
K2¥)

MWW@M%m#WW@W@%MNDAQM(Q
We now compare the two expressions componentwise. Con-
sider the utility space W[Z — x;,T(Z) — xj]: if ¢ = j then
the two MU components are the same. If ¢ # j, consider any
w e W[Z — x;,T(Z) — x}]. Since w € W[T(Z) — x}],
we must have u(xj;w) > wu(xj;w). Therefore MU (x;, W[Z —
x, T(Z) — X)) > MU, W[Z — x;,T(Z) — x}]). In
the expression of SMU(T(Z)) (Eq. 3), each element is no less
than its correspondent in the WP(Z) expression (Eq. 2). Thus
SMU(T(Z),W) > WP(Z,W). =
follows that

From observation 6 and Ilemma 1 it

SMU(T(Z), W) > SMU(Z, W).

Theorem 1 Let Z3y, be a maximin optimal recommendation set.
Then Z3y; is an optimal choice set: WP(Zy, , W) = MazWP(W).

Proof Suppose Zjy, is not an optimal choice set, i.e., there is some
Z' such that WP(Z',W) > W P(Z3jy,W). If we apply transfor-
mation T to Z’' we obtain a set T'(Z’), and by the results above
we have: SMU(T(Z2',W)) > WP(Z',W) > WP(Z",W) >
SMR(Zyy, W). This contradicts the (setwise) maximin optimality
of Zjy. =

4 Maximin Utility Optimization

In this section we formalize the problem of generating recommenda-
tions (both single recommendations and setwise recommendations)
using mathematical programming techniques (linear programming
models and mixed integer programming models).

In the following we assume the utility to be linear in w: u(x; w) =
w - x. In this case W is convex polytope effectively represented by a
set of constraints. Whenever the user answer a query, new constraints
are added. We denote with Constraints(W) the set of constraints that
represent the space of feasible utility functions (consistent with the
user’s answers).

MU(x, W) Given a configuration x and a space of possible util-
ity functions W (encoded by linear constraints), the minimum utility
of « can be found by solving the following linear problem (w;- and
w, are a lower and upper bound on the values of the utility parame-
ters w;; this can be used to encode a non-probabilistic “prior” on the
utility parameters).

min w-x = Z Ti - w;
1<i<n
s.t. Constraints(W) @

wit <w; <w)l Vie{l...n} 5)

Decision variables: w (vector of size n)

MMU(W) Given a space of possible utility functions W (encoded
by linear constraints), the problem is to find the configuration x3
that is associated with maximin utility. In order to “break” the max-
imin optimization, we make use of Benders decomposition:

max o

st.o<w-x Vw € GEN (6)

Decision variables: x, 0

In this model, § corresponds to the maximin utility of the opti-
mal recommendation xj;,. Constraint 6 ensures that ¢ is less than
the utility of choice x for each w. The optimization is exact when
GEN = W in constraint 6. However, all the constraints over W
need not be expressed for each of the (continuously many) w € W.
Since maximin utility is optimal at some vertex of W, we only
need to apply constraints for all vertices of W, which we denote
Vert(W'). However, the number of vertices in W can still be poten-
tially exponential. We apply constraint generation in order to make
solving the MIP much more efficient, as very few of the vertices are
usually needed. This procedure works by solving a relaxed version
of the problem above—the master problem— using only the con-
straints corresponding to a small subset GEN C Vert(W). We then
test whether any constraints are violated in the current solution. This
is accomplished by computing the minimum utility of the returned so-
lution. If MU is lower than what was found in the master problem, a
constraint was violated. The vertex for this constraint (corresponding
to the choice w® of the adversary) is added to the master problem,
tightening the MIP relaxation. The new relaxation is computed, and
this process is repeated until no violated constraints exist.

Now we provide LP and MIP formulations that extend these opti-
mization to sets.

SMU(Z, W) Given a set Z and a space of possible utility func-
tions W the setwise minimum utility of Z can be found by solv-
ing k (k being the cardinality of Z) optimization problems, in
virtue of Observation 4. Considering the Z-partition of W, we com-
pute MU (x,W[Z — x]) for each x € Z, using the LP model
shown above. We then take the (arithmetic) minimum of the results:
mingez MU (x, W[Z — x]).

SMMU(W) Given utility space W, we can compute the maximin
optimal set (of cardinality k) using the following MIP.

max 9§
sta< > vl Yw e GEN @)
1<5<k
vl <w.x’ Vj < k,w € GEN @®)
vl, <w'Ij Vj <k,we GEN ©
> B, =1 vw € GEN (10)

1<5<k
I3, €{0,1} Vj < k,w € GEN

Decision variables: x7, §, Iy, vy

In this model, § corresponds to the setwise maximin utility of the
optimal set Zj;. M is an arbitrary large number; w ' is some upper
bound on the values taken by the weight parameters. Constraints 7,
8 and 9 ensures that ¢ is less than the utility of the best option in
{x!, ..., x*} for each w, by introducing a variable v (for each w and
each element of the set) to represent the value of minimum utility for
the item selected, and indicators I, to represent the selection. Only
one v, will be different from zero for each w, and since the objective
function is maximized, the optimization will set v/, = w - x? for
the j such that I, = 1; constraint 9 enforces 0 in the other cases.

Constraint 10 ensures that only one of the k items is selected for
each utility function w.

We employ constraint generation in a way analogous to the single
item case. At each step of the optimization, we compute the setwise
minimum utility, solved using a series of LPs (as discussed above).

Alternative Heuristics Setwise optimization requires solving a
large number of MIPs using constraint generation strategies. We also
present a number of heuristic strategies that are computationally less
demanding.

o The current solution strategy (CSS) proceeds as follows.
Consider w®, the adversary’s utility minimizing the util-
ity of xj, the current maximin optimal recommenda-
tion; w(xy;w?) = MU(xjy; W). Let’s further con-
sider x* = argmaxxex u(x;w®). CSS will return the
set Zecss = {xJy,x%}. We extend this to sets with
cardinality greater than two. Considering a set Z, de-
fine w%(Z) = argminwew maxxezu(x;w) and be
x%(Z) = argmaxxex u(x;w®(Z)). The chain of adver-
saries strategy constructs a set of size k starting by initializing Z
to be Zcss, the set of size two returned by the current solution
strategy, and then iteratively add one element (k — 2 times) by
setting Z := Z U x*(Z).

e The query iteration strategy (QIS) directly applies the T oper-
ator until a fixed point is reached. A fixed point is such that
SMU(T(Z); W) = SMU(Z; W).

5 Experiments

Using randomly generated elicitation data we ran a number of ex-
periments using the algorithms described above. For all experiments,
we generated constraints on the possible options using random bi-
nary constraints of the form — f1 V = f> where f1 and f> are features.
We also assume some prior knowledge of user preferences, repre-
sented by random utility constraints of the form w - xx > w - Xy,
where xi and x; are random assignments € [0, 1]™ (not necessarily
feasible options) sampled with uniform probability over all possible
assignments. The user’s preference values w; . . . w,, are random and
normalized such that ... w = 1. Finally, for all experiments we
use recommendation/query sets of size (k) 3.

First, we ran experiments to determine how the runtime of the al-
gorithms are affected by increasing instance sizes. This was done by
running the algorithms on instances ranging from 10 to 15 features,
with 30 experiments performed on each size. The average runtimes
for these experiments can be seen in figure 1. As seen in the figure,
runtime of exact SMMU computation becomes rapidly higher, and
we were unable to perform experiments with more than 15 features,
as several of the 30 experiments per size would time out with 16
features. In contrast to this we see that the runtime of the CSS and
QIS algorithms do not rise significantly as the number of features
increase. Due to this, we focus on the performance of CSS and QIS
in the following experiments, as SMMU computation is too slow for
practical use.

Using the CSS and QIS algorithms, we ran experiments to de-
termine how the MMU optimal recommendation improves as more
queries are asked. These were performed using larger instances, with
30 features per instance, 40 binary feature constraints and 40 utility
constraints. In figure 2 we present the utility loss from recommend-
ing the MMU optimal recommendation as opposed to the optimal
recommendation according to the user’s preferences, as a function of

10000 T

1000

time in ms

100 |- b

features

Figure 1. Average runtime of query computation for an increasing number
of features. Averaged over 30 instances per size, with k =3

0.06 T

utility loss

0 L L L L L L L
0 1 2 3 4 5 6 7 8

queries

Figure 2. Average utility loss of the optimal recommendation as a function
of the number of queries, using the CSS and QIS algorithms. Averaged over
30 instances, with k = 3.

the number of queries. The CSS and QIS algorithms have compara-
ble performance, both improving utility loss by a small margin.

In figure 3 we show the minimum utility guarantee from the MMU
recommendation as it increases with more queries asked. It quickly
increases with the first 4-5 queries, but after that there is little im-
provement. While our theoretical results show that there is a con-
nection between the problem of generating recommendations and
queries, our results show that the pessimistic maximin decision crite-
rion is generally not able to effetively elicit user preferences beyond
the first few queries. In this case, it might be useful to adopt a non-
myopic approach, or an alternative decision criterion.

Further investigation is required to determine in which settings our
framework can be used effectively in interactive elicitation, and how
to avoid stalling.

We also note that it is of course possible to use maximin as a de-
cision criterion, while resorting to other strategies (perhaps based on
regret or on probabilistic methods) to decide the next query.

0.5 T T

css ——
QIS -~

>]
E
E
5
E
£

£ 4

01t]

o ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8

queries

Figure 3. Average minimum utility as a function of the number of queries
using the CSS and QIS algorithms. Averaged over 30 instances, with k = 3.

6 Discussion

In this paper we have developed a novel formalization for decision-
making under utility uncertainty (making recommendations) using
the maximin utility criterion. This approach allows for the highest
degree of robustness, as the option recommended is guaranteed to
ensure highest utility in the worst case. We formulated the problem
of generating recommendation sets and introduced a new decision
criteria. We developed computational MIP methods for optimal rec-
ommendation sets, as well as tractable approximations.

Moreover, following analogous models available for the minimax
regret and Bayesian frameworks, we showed the connection between
the problem of generating optimal recommendation sets and myopi-
cally optimal elicitation queries. This shows that our setwise max-
imin criterion, a natural extension of maximin to sets, in addition to
providing robust recommendation sets, also serves as a means of gen-
erating myopically optimal choice queries (asking the user to pick his
most preferred option in a slate).

Finally, we provided preliminary experimental results, showing
performance of our approach on randomly generated data. We
showed that maximin as an elicitation framework can provide good
initial queries, but in an interactive setting it often stalls before find-
ing the optimal recommendation.

We conclude with a remark about the choice of the decision cri-
terion. A common criticism about maximin is that it can be overly
pessimistic. Indeed expected utility (assuming a prior is available)
or minimax regret may yield better recommendations in many cases.
However, when a decision maker wishes guarantees on the worstcase
performance (perhaps in critical decisions with high stakes), she
must be willing to sacrifice “average” utility for such guarantee. This
is the price to pay for the (strong) worstcase guarantees of maximin!
We argue that the question of what criterion to use is almost philo-
sophical, as there is no “right” or “wrong” decision criterion (each
one might be better suited to different decision contexts).

REFERENCES

[1] Craig Boutilier. A POMDP formulation of preference elicitation prob-
lems. In Proc. of AAAI-02, pages 239-246, Edmonton, 2002.

(2]

(3]
(4]

[5]
(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans.
Constraint-based optimization and utility elicitation using the minimax
decision criterion. Artifical Intelligence, 170(8-9):686—713, 2006.
Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active col-
laborative filtering. In Proc. of UAI-03, pages 98—106, Acapulco, 2003.
Darius Braziunas and Craig Boutilier. Minimax regret-based elicita-
tion of generalized additive utilities. In Proc. of UAI-07, pages 25-32,
Vancouver, 2007.

Darius Braziunas and Craig Boutilier. Elicitation of factored utilities.
Al Magazine, 29(4):79-92, 2008.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making ratio-
nal decisions using adaptive utility elicitation. In Proc. of AAAI-2000,
pages 363-369, Austin, TX, 2000.

Peter C. Fishburn. Interdependence and additivity in multivariate, uni-
dimensional expected utility theory. International Economic Review,
8:335-342, 1967.

Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objec-
tives: Preferences and Value Trade-offs. Wiley, New York, 1976.
Jordan J. Louviere, David A. Hensher, and Joffre D. Swait. Stated
Choice Methods: Analysis and Application. Cambridge University
Press, Cambridge, 2000.

Bart Peintner, Paolo Viappiani, and Neil Yorke-Smith. Preferences in
interactive systems: Technical challenges and case studies. Al Maga-
zine, 29(4):13-24, 2008.

Robert Price and Paul R. Messinger. Optimal recommendation sets:
Covering uncertainty over user preferences. In Proc. of AAAI-05, pages
541-548, 2005.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry Smyth.
Incremental critiquing. Knowledge-Based Systems, 18(4-5):143-151,
2005.

Ahti Salo and Raimo P. Himildinen. Preference ratios in multiattribute
evaluation (PRIME)—-elicitation and decision procedures under incom-
plete information. IEEE Trans. on Systems, Man and Cybernetics,
31(6):533-545, 2001.

Olivier Toubia, John Hauser, and Duncan Simester. Polyhedral methods
for adaptive choice-based conjoint analysis. (4285-03), 2003.

Paolo Viappiani and Craig Boutilier. Regret-based optimal recommen-
dation sets in conversational recommender systems. In Proceedings of
the 3rd ACM Conference on Recommender Systems (RecSys09), pages
101-108, New York, 2009.

Paolo Viappiani and Craig Boutilier. Optimal bayesian recommenda-
tion sets and myopically optimal choice query sets. In Advances in
Neural Information Processing Systems 23 (NIPS), Vancouver, 2010.

