
Dynamic Thresholding and Pruning for Regret
Minimization

Noam Brown, Christian Kroer, and Tuomas Sandholm

Carnegie Mellon University, Pittsburgh PA 15213, USA,
noamb@cmu.edu,ckroer@cs.cmu.edu,sandholm@cs.cmu.edu

Abstract. Regret minimization is widely in determining strategies for
imperfect-information games and in online learning. In large games, each
iteration of the algorithm may be prohibitively slow. For this reason,
pruning – in which parts of the decision tree are not traversed in every
iteration – has emerged as an essential method for dealing with large
games. The ability to prune is a primary reason why the Counterfactu-
al Regret Minimization (CFR) algorithm using regret matching has e-
merged as the most popular iterative algorithm for imperfect-information
games, despite its relatively poor convergence bound. In this paper, we
introduce dynamic thresholding, in which a threshold is set at every it-
eration such that any action in the decision tree with probability below
the threshold is set to zero probability. This enables pruning for the first
time in a wide range of algorithms. We prove that dynamic thresholding
can be applied to Hedge while increasing its convergence bound by only
a constant factor in terms of number of iterations. Experiments demon-
strate a substantial improvement in performance relative to the number
of nodes touched.

1 Introduction

We introduce dynamic thresholding for online learning algorithms, in which a
threshold is set at every iteration such that any action with probability below
the threshold is set to zero probability. This enables pruning for the first time
in a wide range of algorithms. The theory that we derive applies to each of the
two central goals in the area:

1. Regret minimization in any setting, where there can be any number of players
in a general-sum game, and our agent may not even know what the game
is (except that the agent knows the available actions when it is her turn to
move).

2. Converging to an ε-Nash equilibrium in a two-player zero-sum game. Results
for (1) immediately imply results for this setting by having our algorithm be
used by both agents.

We will introduce this first for the application of solving zero-sum imperfect-
information games (that is, games like heads-up poker), and then explain how

II

the results directly carry over to non-zero-sum games and to general regret min-
imization. Furthermore, the results apply to both extensive-form and normal-
form representations.

Imperfect-information extensive-form games are a way to model strategic
multi-step interactions between players that have hidden information, such as
negotiations, auctions, cybersecurity settings, and medical settings. A Nash e-
quilibrium in relatively small two-player zero-sum games containing around 108

nodes can be found precisely using a linear program [13]. For larger games, it-
erative algorithms are used to converge to an ε-Nash equilibrium. There are a
number of such iterative algorithms, the most popular of which is Counterfac-
tual Regret Minimization (CFR) [26]. CFR minimizes regret independently at
each decision point (called an information set) in the game tree using any regret-
minimizing algorithm. By far the most popular regret-minimizing algorithm to
use within CFR is regret matching (RM) and variants of RM [15, 12, 11, 5].
CFR+, a variant of CFR with RM, was recently used to essentially solve Limit
Texas Hold’em, the largest imperfect-information game ever to be essentially
solved and the first that is played competitively by humans [2, 24]. That game
(after lossless abstraction [13] as a preprocessor) has over 1013 information sets.

When computing strategies for large imperfect-information games, repeat-
edly traversing the entire game tree with an iterative algorithm may be pro-
hibitively slow. For this reason, pruning—in which parts of the game tree are
not traversed on every iteration—has emerged as an essential method for dealing
with large games. The ability to prune is a primary reason why the Counter-
factual Regret Minimization algorithm (CFR) that uses Regret Matching (RM)
at each information set is the most popular algorithm for imperfect-information
games, despite its relatively poor O(

√
|A|T) cumulative regret.

While regret-minimizing algorithms other than RM can be used within CFR,
and iterative algorithms other than CFR exist with better convergence bounds
in terms of the number of iterations needed [16, 22, 14], CFR with RM exhibits
superior empirical performance in large games [17]. A primary reason for this
is that CFR with RM is able to put zero probability on some actions, and
therefore prune large sections of the game tree, particularly in large games. That
is, it need not traverse the entire game tree on each iteration. This behavior is
shared by some other regret minimizing algorithms, but is relatively uncommon
and is considered a desirable property [20]. The ability to prune enables each
iteration to be completed far more quickly. While the benefit of pruning varies
depending on the game, it can easily be multiple orders of magnitude even in
small games [18, 4]. Moreover, the benefits of pruning typically grow with the
size of the game.

In this paper we introduce dynamic thresholding that allows pruning to be
applied in a wider range of algorithms, and applied more frequently in settings
that already support pruning. We focus on Hedge [10, 19], also known as the
exponentially-weighted forecaster, which is the most popular regret-minimizing
algorithm in domains other than extensive-form game solving, on RM, and on
the Excessive Gap Technique (EGT) [21, 14], which converges to an ε-Nash

III

equilibrium in two-player zero-sum games in O(1
ε), that is, in significantly fewer

iterations than CFR which converges in O(1
ε2).

Dynamic thresholding sets a minimum probability threshold on each itera-
tion, and any action with probability below that threshold is set to zero proba-
bility. We decrease the threshold over time, where the decrease is asymptotically
slower than the possible decrease of action probabilities in Hedge and EGT.
Thus, poor actions may eventually be played with probability below the thresh-
old, and those paths in the game tree can then be pruned using the same methods
as are used in CFR with RM (which we will describe in detail later in the pa-
per). We prove that dynamic thresholding increases the convergence bound in
Hedge and RM by only a small constant factor, where the factor depends on
how aggressively the threshold is set. This holds whether Hedge and RM are
used as stand-alone algorithms in any setting, or as subroutines within CFR for
game-tree settings.

The remainder of this paper is structured as follows. In the next section, we
cover background on imperfect-information extensive-form games, Nash equilib-
ria, and CFR. Then, we formally introduce dynamic thresholding in CFR with
Hedge/RM and prove its convergence guarantees. Then, we present experimental
results that show that dynamic thresholding leads to a dramatic improvement
in the performance of CFR with Hedge and of EGT. Finally, we will conclude
and discuss other potential future uses of dynamic thresholding.

2 Background

In this section we present the background needed for the rest of the paper.
The first subsection introduces the standard notation. The subsection after that
covers CFR, explained in a more general way than usual because we want to also
consider other regret matching algorithms within CFR than the usual, which is
RM. Finally, the third subsection presents the pruning variants that have been
introduced for CFR.

2.1 Notation

In an imperfect-information extensive-form game there is a finite set of players,
P. H is the set of all possible histories (nodes) in the game tree, represented
as a sequence of actions, and includes the empty history. A(h) is the actions
available in a history and P (h) ∈ P ∪ c is the player who acts at that history,
where c denotes chance. Chance plays an action a ∈ A(h) with a fixed probability
σc(h, a) that is known to all players. The history h′ reached after an action is
taken in h is a child of h, represented by h · a = h′, while h is the parent of h′.
More generally, h is an ancestor of h′ (and h′ is a descendant of h), represented
by h @ h′, if there exists a sequence of actions from h to h′. Z ⊆ H are terminal
histories for which no actions are available. For each player i ∈ P, there is a
payoff function ui : Z → <. If P = {1, 2} and u1 = −u2, the game is two-player
zero-sum. We define ∆i = maxz∈Z ui(z)−minz∈Z ui(z) and ∆ = maxi∆i.

IV

Imperfect information is represented by information sets for each player i ∈ P
by a partition Ii of h ∈ H : P (h) = i. For any information set I ∈ Ii, all
histories h, h′ ∈ I are indistinguishable to player i, so A(h) = A(h′). I(h) is the
information set I where h ∈ I. P (I) is the player i such that I ∈ Ii. A(I) is the set
of actions such that for all h ∈ I, A(I) = A(h). |Ai| = maxI∈Ii |A(I)| and |A| =
maxi |Ai|. We define U(I) to be the maximum payoff reachable from a history in
I, and L(I) to be the minimum. That is, U(I) = maxz∈Z,h∈I:hvz uP (I)(z) and
L(I) = minz∈Z,h∈I:hvz uP (I)(z). We define ∆(I) = U(I)− L(I) to be the range
of payoffs reachable from a history in I. We similarly define U(I, a), L(I, a),
and ∆(I, a) as the maximum, minimum, and range of payoffs (respectively)
reachable from a history in I after taking action a. We define D(I, a) to be the
set of information sets reachable by player P (I) after taking action a. Formally,
I ′ ∈ D(I, a) if for some history h ∈ I and h′ ∈ I ′, h · a v h′ and P (I) = P (I ′).

A strategy σi(I) is a probability vector over A(I) for player i in information
set I. The probability of a particular action a is denoted by σi(I, a). Since all
histories in an information set belonging to player i are indistinguishable, the
strategies in each of them must be identical. That is, for all h ∈ I, σi(h) = σi(I)
and σi(h, a) = σi(I, a). We define σi to be a probability vector for player i over
all available strategies Σi in the game. A strategy profile σ is a tuple of strategies,
one for each player. ui(σi, σ−i) is the expected payoff for player i if all players
play according to the strategy profile 〈σi, σ−i〉. If a series of strategies are played

over T iterations, then σ̄Ti =
∑
t∈T σ

t
i

T .

πσ(h) = Πh′→avhσP (h)(h, a) is the joint probability of reaching h if all players
play according to σ. πσi (h) is the contribution of player i to this probability (that
is, the probability of reaching h if all players other than i, and chance, always
chose actions leading to h). πσ−i(h) is the contribution of all players other than
i, and chance. πσ(h, h′) is the probability of reaching h′ given that h has been
reached, and 0 if h 6@ h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii, πi(h) = πi(h

′).
In this paper we focus on perfect-recall games. Therefore, for i = P (I) we define
πi(I) = πi(h) for h ∈ I. We define the average strategy σ̄Ti (I) for an information
set I to be

σ̄Ti (I) =

∑
t∈T π

σti
i σ

t
i(I)∑

t∈T π
σt
i (I)

(1)

A best response to σ−i is a strategy σ∗i such that ui(σ
∗
i , σ−i) = maxσ′i∈Σi ui(σ

′
i, σ−i).

A Nash equilibrium, is a strategy profile where every player plays a best re-
sponse. Formally, a Nash equilibrium is a strategy profile σ∗ such that ∀i,
ui(σ

∗
i , σ
∗
−i) = maxσ′i∈Σi ui(σ

′
i, σ
∗
−i). We define a Nash equilibrium strategy for

player i as a strategy σi that is part of any Nash equilibrium. In two-player zero-
sum games, if σi and σ−i are both Nash equilibrium strategies, then 〈σi, σ−i〉
is a Nash equilibrium. We define an ε-equilibrium as a strategy profile σ∗ such
that ∀i, ui(σ∗i , σ∗−i) + ε ≥ maxσ′i∈Σi ui(σ

′
i, σ
∗
−i).

V

2.2 Counterfactual Regret Minimization (CFR)

Counterfactual Regret Minimization (CFR) is the most popular algorithm for
extensive-form imperfect-information games. In CFR, the strategy vector for
each information set is determined according to a regret-minimization algorith-
m [26]. Typically, regret matching (RM) is used as the regret-minimization al-
gorithm in CFR even though Hedge has a better convergence bound (in terms
of the number of iterations) [6]. One reason is that the vanilla version of Hedge
does not support pruning of any paths in extensive-form games because all prob-
abilities in Hedge are strictly positive. In section 3 we introduce a modification
to Hedge that allows pruning, so we cover both Hedge and RM in this section.

Our analysis of CFR makes frequent use of counterfactual value. Informally,
this is the expected utility of an information set given that player i tries to reach
it. For player i at information set I given a strategy profile σ, this is defined as

vσ(I) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h, z)ui(z)

))
(2)

The counterfactual value of an action a is

vσi (I, a) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h · a, z)ui(z)

))
(3)

Let σt be the strategy profile used on iteration t. The instantaneous regret
on iteration t for action a in information set I is

rt(I, a) = vσ
t

P (I)(I, a)− vσ
t

P (I)(I) (4)

and the regret for action a in I on iteration T is

RT (I, a) =
∑
t∈T

rt(I, a) (5)

Additionally, RT+(I, a) = max{RT (I, a), 0} and RT (I) = maxa{RT+(I, a)}. Re-
gret for player i in the entire game is

RTi = max
σ′i∈Σi

∑
t∈T

(
ui(σ

′
i, σ

t
−i)− ui(σti , σt−i)

)
(6)

In regret matching, a player picks a distribution over actions in an informa-
tion set in proportion to the positive regret on those actions. Formally, on each
iteration T + 1, player i selects actions a ∈ A(I) according to probabilities

σT+1(I, a) =


RT+(I,a)∑

a′∈A(I) R
T
+(I,a′)

, if
∑
a′ R

T
+(I, a′) > 0

1
|A(I)| , otherwise

(7)

If a player plays according to regret matching in information set I on every
iteration then on iteration T , RT (I) ≤ ∆(I)

√
|A(I)|

√
T [6].

VI

In Hedge, a player picks a distribution over actions in an information set
according to

σT+1(I, a) =
eηTR

T (I,a)∑
a′∈A(I) e

ηTRT (I,a′)
(8)

where ηT is a tuning parameter. There is a substantial literature on how to set ηT
for best performance [6, 7]. If a player plays according to Hedge in information

set I on every iteration t and uses ηt =
√

2 ln(|A(I)|)
T then on iteration T , RT (I) ≤

∆(I)
√

2 ln(|A(I)|)T [6].
If a player plays according to CFR on every iteration then

RTi ≤
∑
I∈Ii

RT (I) (9)

So, as T →∞,
RTi
T → 0.

In two-player zero-sum games, if both players’ average regret satisfies
RTi
T ≤ ε,

their average strategies 〈σ̄T1 , σ̄T2 〉 form a 2ε-equilibrium [25]. Thus, CFR consti-
tutes an anytime algorithm for finding an ε-Nash equilibrium in zero-sum games.

2.3 Pruning Techniques

In this section we discuss pruning techniques that allow parts of the game tree
to be skipped within CFR iterations.

(Partial) Pruning Typically, regret is updated by traversing each node in
the game tree separately for each player, and calculating the contribution of a
history h ∈ I to rt(I, a) for each action a ∈ A(I). If a history h is reached in

which πσ
t

−i(h) = 0 (that is, an opponent’s reach is zero), then from (2) and (3)
the strategy at h contributes nothing on iteration t to the regret of I(h) (or
to the information sets above it). Moreover, any history that would be reached
beyond h would also contribute nothing to its information set’s regret because
πσ

t

−i(h
′) = 0 for every history h′ where h @ h′ and P (h′) = P (h). Thus, when

traversing the game tree for player i, there is no need to traverse beyond any
history h when πσ

t

−i(h) = 0. The benefit of this form of pruning, which we refer
to as partial pruning, varies depending on the game, but empirical results show
a factor of 30 improvement in some small games [18].

Regret-Based Pruning (RBP) While partial pruning allows one to prune
paths that an opponent reaches with zero probability, the recently introduced
regret-based pruning (RBP) algorithm allows one to also prune paths that the
traverser reaches with zero probability [4]. However, this pruning is necessarily
temporary. Consider an action a ∈ A(I) such that σt(I, a) = 0, and assume for
now that it is known action a will not be played with positive probability until
some far-future iteration t′ (in RM, this would be the case if Rt(I, a)� 0). Since

VII

action a is played with zero probability on iteration t, the strategy played and
reward received following action a (that is, in D(I, a)) will not contributed to
the regret for any information set preceding action a on iteration t. In fact, what
happens in D(I, a) has no bearing on the rest of the game tree until iteration t′ is
reached. So one can “procrastinate” until iteration t′ in deciding what happened
beyond action a on iteration t, t+ 1, ..., t′ − 1.

Upon reaching iteration t′, rather than individually making up the t′ − t
iterations over D(I, a), one can instead do a single iteration, playing against the
average of the opponents’ strategies in the t′− t iterations that were missed, and
declare that strategy was played on all the t′ − t iterations. This accomplishes
the work of the t′ − t iterations in a single traversal. Moreover, since player i
never plays action a with positive probability between iterations t and t′−1, that
means every other player can apply partial pruning on that part of the game
tree for the t′ − t iterations, and skip it completely. This, in turn, means that
player i has free rein to play whatever she wants in D(I, a) without affecting
the regrets of the other players. In light of that, and of the fact that player i
gets to decide what is played in D(I, a) after knowing what the other players
have played, player i might as well play a strategy that ensures zero regret for
all information sets I ′ ∈ D(I, a) in the iterations t to t′− 1. For instance, player
i can play a best response to the opponents’ average strategy from iterations t
to t′ − 1; this is what we do in the experiments in this paper.

Regret-based pruning only allows a player to skip traversing D(I, a) for as
long as σt(I, a) = 0. Thus, in RM if Rt0(I, a) < 0 we can prune the game tree
beyond action a from iteration t0 onward in consecutive iterations as long as for
the current iteration t1 we have

t0∑
t=1

vσ
t

(I, a) +

t1∑
t=t0+1

πσ
t

−i(I)U(I, a) ≤
t1∑
t=1

vσ
t

(I) (10)

Once this no longer holds, skipping ceases. If we later find another t0 that satisfies
Rt0(I, a) < 0, we do another sequence of iterations where we skip traversing after
a, and so on.

3 Dynamic Thresholding

The pruning methods described in Section 2.3 can only be applied when an action
is played with zero probability. This makes pruning incompatible with Hedge,
because in Hedge all the action probabilities are strictly positive. This motivates
our introduction of dynamic thresholding, in which low-probability actions are
set to zero probability.

In dynamic thresholding for Hedge, we set any action with probability less

than
(C−1)

√
ln(|A(I)|)√

2|A(I)|2
√
t

on iteration t (where C ≥ 1) to zero probability and nor-

malize the remaining action probabilities accordingly so they sum to 1. If an
action is thresholded, this deviation from what Hedge calls for may lead to worse
performance and therefore higher regret. However, using the threshold that we

VIII

just specified above, we ensure that the new regret is within a constant factor C
of the traditional regret bound.

Theorem 1. If player P (I) plays according to Hedge in an information set I

for T iterations using threshold
(C−1)

√
ln(|A(I)|)√

2|A(I)|2
√
t

with C ≥ 1 on every iteration t,

then RT (I) ≤ C
√

2∆(I)
√

ln(|A(I)|)
√
T .

To apply the above theorem within CFR, we get from Equation 9 that one
can then just sum the regrets of all information sets I to bound the total regret
for this player.

Dynamic thresholding can in general be applied to any regret minimization
algorithm. We present Theorem 1 specifically for Hedge in order to tailor the
threshold for that algorithm, which provides a tighter theoretical bound. In
Theorem 2, we also show that dynamic thresholding can be applied to RM.
However, it results in very little, if any, additional pruning. This is because
RM is very unlikely in practice to put extremely small probabilities on actions.
Nevertheless, we prove that dynamic thresholding applies to RM for the sake of
completeness and for its potential theoretical applications. Note that the formula
for the threshold is now different.

Theorem 2. If player P (I) plays according to regret matching in an informa-

tion set I for T iterations using threshold C2−1
2C|A(I)|2

√
t

with C ≥ 1 on every

iteration t, then RT (I) ≤ C∆(I)
√
|A(I)|

√
T .

Again, to apply the above theorem within CFR, we get from Equation 9 that
one can then just sum the regrets of all information sets I to bound the total
regret for this player.

4 Regret-Based Pruning for Hedge

In this section we describe how dynamic thresholding enables regret-based prun-
ing when using Hedge. To use RBP, it is necessary to determine a lower bound
on the number of iterations for which an action will have zero probability. In RM
without dynamic thresholding this is simply the minimum number of iterations
it would take an action to achieve positive regret, as shown in (10). In Hedge
with dynamic thresholding, we instead must determine the minimum number of
iterations it would take for an action to reach probability above the dynamic
threshold.

Let RT0(I, a) be the regret for an action a in information set I on iteration

T0. If σT0(I, a) <
(C−1)

√
ln(|A(I)|)√

2|A(I)|2
√
T0

, where σT0(I, a) is defined according to (8),

then pruning can begin on iteration T0. By Theorem 1, we can prune the game
tree following action a on any consecutive iteration T after that if

eηT
(
RT0 (I,a)+U(I,a)(T−T0)

)
∑
a′∈A(I) e

ηT

(
RT (I,a′)+

∑T
T ′=T0+1

vT
′
(I,a′)

)<(C − 1)
√

ln(|A(I)|)
√
2|A(I)|2

√
t

(11)

IX

Once this no longer holds, skipping ceases. If we later find another T0 that
satisfies the condition above, we do another sequence of iterations where we skip
traversing after a, etc.

Fig. 1. Performance of EGT, CFR with Hedge, and CFR with RM on Leduc and
Leduc-5. CFR with Hedge is shown without any pruning (vanilla Hedge), with dynamic
thresholding, and with RBP. EGT is shown without any pruning (vanilla EGT) and
with dynamic thresholding. CFR with RM is shown with partial pruning (vanilla RM)
and with RBP. Dynamic thresholding on RM resulted in identical performance to
vanilla RM, and is therefore not shown separately.

5 Experiments

We tested dynamic thresholding with and without RBP on a standard bench-
mark game called Leduc Hold’em [23] and an enlarged variant of Leduc Hold’em
featuring more actions, called Leduc-5. Leduc Hold’em is a popular benchmark
for imperfect-information game solving due to its feasible size and strategic com-
plexity. In Leduc Hold’em, there is a deck consisting of six cards: two each of
Jack, Queen, and King. There are two rounds. In the first round, each player
places an ante of 1 chip in the pot and receives a single private card. A round
of betting then takes place with a two-bet maximum, with Player 1 going first.
A public shared card is then dealt face up and another round of betting takes
place. Again, Player 1 goes first, and there is a two-bet maximum. If one of the
players has a pair with the public card, that player wins. Otherwise, the player
with the higher card wins. In standard Leduc Hold’em, all bets in the first round
are 1 chip, while all bets in the second round are 2 chips. In Leduc-5, there are

X

5 bet sizes to choose from: in the first round the betting options are 1, 2, 4, 8,
or 16 chips, while in the second round the betting options are 2, 4, 8, 16, or
32 chips. Leduc Hold’em contains 288 information sets, compared to 34, 224 for
Leduc-5.

Hedge requires the user to set the tuning parameter ηt. When proving worst-
case regret bounds, the parameter is usually defined as a function of ∆(I) for

an information set I (for example, ηt =

√
8 ln(|A(I)|)
∆(I)

√
t

) [6]. However, this is overly

pessimistic in practice, and better performance can be achieved with heuristics
while still guaranteeing convergence, albeit at a weaker convergence bound.1

In our experiments, we set ηt =

√
ln(|A(I)|)

3
√

VAR(I)t
√
t
, where VAR(I)t is the observed

variance of v(I) up to iteration t, based on a heuristic by Chaudhuri et al. [8].

In addition to the regret-minimization algorithms which are the main focus
of this paper, for comparison we also experimented with the leading gradient-
based algorithm for finding ε-equilibrium in zero-sum games, the excessive gap
technique (EGT) [16, 21]. It converges to an ε-equilibrium in two-player zero-sum
games inO(1

ε) iterations, that is, in significantly fewer iterations than CFR which
converges in O(1

ε2). In this EGT variant the gradient is computed by traversing
the game tree (see also [17]). This enables pruning and dynamic thresholding to
be implemented in EGT as well.

Figure 1 shows the performance of dynamic thresholding on Hedge and EGT
against the vanilla versions of the algorithm as well as against the benchmark
algorithms CFR+ and CFR with RM.2 The two figures on the left show that
dynamic thresholding benefits EGT and Hedge, and the relative benefit increases
with game size. In Leduc-5, dynamic thresholding improves the performance of
EGT by a factor of 2, and dynamic thresholding combined with RBP improves
the performance of CFR with Hedge by a factor of 7. The graphs on the right
show that, when using thresholding and RBP, Hedge outperforms RM in Leduc,
but RM outperforms Hedge in Leduc-5. RM’s better performance in Leduc-5 is
due to more widespread pruning than Hedge.

While CFR+ exhibits the best performance in Leduc-5, there are several
drawbacks to the algorithm that cause it not to be usable in all settings. First,
CFR+ does not converge in theory when combined with RBP. The noisy perfor-
mance of CFR+ with RBP in Leduc-5, and the weaker performance of CFR+
with RBP when compared with vanilla CFR+ in Leduc, are consequences of this.
Second, while CFR+ in practice outperforms CFR with RM or Hedge, it has a

1 Convergence is still guaranteed so long as ∆(I) is replaced with a value that has a
constant lower and upper bound, though the worst-case bound may be worse.

2 We present our results with the number of nodes touched on the x axis. Nodes
touched is a hardware- and implementation-independent proxy for time. Hedge in-
volves exponentiation when determining strategies, which takes longer than the sim-
ple floating point operations of RM. In our implementation, regret matching traverses
36% more nodes per second than Hedge. However, in large-scale multi-core imple-
mentations of CFR, memory access is the bottleneck on performance and therefore
the penalty for using Hedge should not be as significant.

XI

worse theoretical bound. Moreover, in the long run EGT appears to outperfor-
m CFR+. Finally, CFR+ is not compatible with sampling, which is commonly
used in large imperfect-information games.

Figure 2 shows the performance of EGT and Hedge with different aggressive-
ness of dynamic thresholding. For EGT, we threshold by c

T , where the number

shown in the legend is c. For Hedge, we threshold by
d
√

ln(|A|)
√
2|A|2

√
T

, where d is shown

in the legend (all of those values satisfy the theory of this paper). The results
show that the performance is not sensitive to the parameter.

Fig. 2. Varying the aggressiveness of dynamic thresholding.

XII

6 Conclusion and Future Research

We introduced dynamic thresholding for online learning algorithms, in which a
threshold is set at every iteration such that any action with probability below
the threshold is set to zero probability. This enables pruning for the first time
in a wide range of algorithms. We showed that it can be applied to both Re-
gret Matching and Hedge—regardless of whether they are used in isolation for
any problem or as subroutines at each information set within Counterfactual Re-
gret Minimization, the most popular algorithm for solving imperfect-information
game trees. We proved that the regret bound increases by only a small constant
factor, and each iteration becomes faster due to enhanced pruning. Our ex-
periments demonstrated substantial speed improvements in Hedge; the relative
speedup increases with problem size.

We also developed a version of the leading gradient-based algorithm for solv-
ing imperfect-information games, the excessive gap technique, where we compute
the gradient based on a traversal of the game tree, thereby enabling the use of
dynamic thresholding and pruning. Experiments again showed that they lead to
a significant speedup, and that the relative speedup increases with problem size.

Our results on Hedge might also be useful for boosting when Hedge is used
therein [10, 20]. The idea is that low-weight weak learners and/or low-weight
training instances (as an analogy to low-probability actions in our paper) would
then not need to be run, which may lead to significant time savings.

Future work also includes studying whether the idea of dynamic thresholding
could be applied to other iterative algorithms that place at least some small
positive probability on all actions (e.g., [22, 9]).

Bibliography

[1] Blackwell, David. An analog of the minmax theorem for vector payoffs.
Pacific Journal of Mathematics, 6:1–8, 1956.

[2] Bowling, Michael, Burch, Neil, Johanson, Michael, and Tammelin, Oskari.
Heads-up limit hold’em poker is solved. Science, 347(6218):145–149, Jan-
uary 2015.

[3] Brown, Noam and Sandholm, Tuomas. Regret transfer and parameter op-
timization. In AAAI Conference on Artificial Intelligence (AAAI), 2014.

[4] Brown, Noam and Sandholm, Tuomas. Regret-based pruning in extensive-
form games. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), 2015.

[5] Brown, Noam, Ganzfried, Sam, and Sandholm, Tuomas. Hierarchical ab-
straction, distributed equilibrium computation, and post-processing, with
application to a champion no-limit Texas Hold’em agent. In Internation-
al Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
2015.

[6] Cesa-Bianchi, Nicolo and Lugosi, Gabor. Prediction, learning, and games.
Cambridge University Press, 2006.

[7] Cesa-Bianchi, Nicolo, Mansour, Yishay, and Stoltz, Gilles. Improved second-
order bounds for prediction with expert advice. Machine Learning, 66(2-3):
321–352, 2007.

[8] Chaudhuri, Kamalika, Freund, Yoav, and Hsu, Daniel J. A parameter-free
hedging algorithm. In Advances in neural information processing systems,
pp. 297–305, 2009.

[9] Daskalakis, Constantinos, Deckelbaum, Alan, and Kim, Anthony. Near-
optimal no-regret algorithms for zero-sum games. Games and Economic
Behavior, 92:327–348, 2015.

[10] Freund, Yoav and Schapire, Robert. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

[11] Gibson, Richard. Regret Minimization in Games and the Development of
Champion Multiplayer Computer Poker-Playing Agents. PhD thesis, Uni-
versity of Alberta, 2014.

[12] Gibson, Richard, Lanctot, Marc, Burch, Neil, Szafron, Duane, and Bowl-
ing, Michael. Generalized sampling and variance in counterfactual regret
minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2012.

[13] Gilpin, Andrew and Sandholm, Tuomas. Lossless abstraction of imperfect
information games. Journal of the ACM, 54(5), 2007.

[14] Gilpin, Andrew, Peña, Javier, and Sandholm, Tuomas. First-order algorith-
m with O(ln(1/ε)) convergence for ε-equilibrium in two-person zero-sum
games. Mathematical Programming, 133(1–2):279–298, 2012. Conference
version appeared in AAAI-08.

XIV

[15] Hart, Sergiu and Mas-Colell, Andreu. A simple adaptive procedure leading
to correlated equilibrium. Econometrica, 68:1127–1150, 2000.

[16] Hoda, Samid, Gilpin, Andrew, Peña, Javier, and Sandholm, Tuomas. S-
moothing techniques for computing Nash equilibria of sequential games.
Mathematics of Operations Research, 35(2):494–512, 2010. Conference ver-
sion appeared in WINE-07.

[17] Kroer, Christian, Waugh, Kevin, Kılınç-Karzan, Fatma, and Sandholm,
Tuomas. Faster first-order methods for extensive-form game solving. In
Proceedings of the ACM Conference on Economics and Computation (EC),
2015.

[18] Lanctot, Marc, Waugh, Kevin, Zinkevich, Martin, and Bowling, Michael.
Monte Carlo sampling for regret minimization in extensive games. In Pro-
ceedings of the Annual Conference on Neural Information Processing Sys-
tems (NIPS), pp. 1078–1086, 2009.

[19] Littlestone, Nick and Warmuth, M. K. The weighted majority algorithm.
Information and Computation, 108(2):212–261, 1994.

[20] Luo, Haipeng and Schapire, Robert E. A drifting-games analysis for online
learning and applications to boosting. In Advances in Neural Information
Processing Systems, pp. 1368–1376, 2014.

[21] Nesterov, Yurii. Excessive gap technique in nonsmooth convex minimiza-
tion. SIAM Journal of Optimization, 16(1):235–249, 2005.

[22] Pays, François. An interior point approach to large games of incomplete
information. In AAAI Computer Poker Workshop, 2014.

[23] Southey, Finnegan, Bowling, Michael, Larson, Bryce, Piccione, Carmelo,
Burch, Neil, Billings, Darse, and Rayner, Chris. Bayes’ bluff: Opponen-
t modelling in poker. In Proceedings of the 21st Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 550–558, July 2005.

[24] Tammelin, Oskari, Burch, Neil, Johanson, Michael, and Bowling, Michael.
Solving heads-up limit texas hold’em. In Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2015.

[25] Waugh, Kevin, Schnizlein, David, Bowling, Michael, and Szafron, Duane.
Abstraction pathologies in extensive games. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), 2009.

[26] Zinkevich, Martin, Bowling, Michael, Johanson, Michael, and Piccione,
Carmelo. Regret minimization in games with incomplete information. In
Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS), 2007.

XV

Appendix

A Proof of Theorem 1

Proof. We use η =

√
2 ln(|A(I)|)
∆(I)

√
T

and define Φ(Rt(I)) as

Φ(Rt(I)) =
1

η
ln
(∑
a∈A(I)

eηR
t(I,a)

)
(12)

Since for all a ∈ A(I) we know eηR
t(I,a) > 0, so

max
a∈A(I)

RT (I, a) ≤ Φ(RT (I)) (13)

We prove inductively on t that

Φ(Rt(I)) ≤ ln(|A(I)|)
η

+ C(∆(I))2ηt (14)

If (14) holds for all t, then from (13) the lemma is satisfied.
For t = 1, dynamic thresholding produces the same strategy as vanilla Hedge,

so (14) is trivially true. We now assume that (14) is true for t− 1 and consider
iteration t > 1. Vanilla Hedge calls for a probability vector σt(I) that, if played
on every iteration t, would result in (14) holding for T . Dynamic thresholding
creates a new strategy vector σ̂t(I). Let δt(a) = σ̂t(I, a) − σt(I, a) and δt =
maxa∈A(I) δ

t(a).
In the worst case, all but one action is reduced to zero and the probability

mass is added to the single remaining action. Thus, |δt(a)| ≤ (C−1)
√

ln(|A(I)|)√
2|A(I)|

√
t

.

After playing σ̂t(I, a) on iteration t, we have

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

eη
(
Rt−1+rt(I,a)

))

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

eη
(
Rt−1+vt(I,a)−vt(I)

))

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

e
η

(
Rt−1+vt(I,a)−

∑
a′∈A(I)

(
σ̂t(I,a′)vt(I,a′)

)))
Since σ̂t(I, a′) = σt(I, a) + δt(a), we get

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

e
η

(
Rt−1+vt(I,a)−

∑
a′∈A(I)

(
σt(I,a′)vt(I,a′)+δ(a′)vt(I,a′)

)))

XVI

Since vt(I, a′) ≤ ∆(I) and δt(a′) ≤ δt, this becomes

Φ(Rt(I)) ≤ 1

η
ln
(
eηδ

t∆(I)|A(I)|
∑

a∈A(I)

e
η

(
Rt−1+vt(I,a)−

∑
a′∈A(I)

(
σt(I,a′)vt(I,a′)

)))

Φ(Rt(I)) ≤ δt∆(I)|A(I)|+1

η
ln
(∑
a∈A(I)

e
η

(
Rt−1+vt(I,a)−

∑
a′∈A(I)

(
σt(I,a′)vt(I,a′)

)))
Since vt(I, a)−

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′) is the original update Hedge intended,

we apply Theorem 2.1 from [6] and Lemma 1 from [3] to get

Φ(Rt(I)) ≤ δt∆(I)|A(I)|+ Φ(Rt−1(I)) +
(∆(I))2η

2

Since δt < (C−1)∆(I)η
2|A(I)| , we get

Φ(Rt(I)) ≤ Φ(Rt−1(I)) + C(∆(I))2η

Substituting the bound on Φ(Rt−1(I)) we arrive at

Φ(Rt(I)) ≤ ln(|A(I)|)
η

+ C(∆(I))2ηt

This satisfies the inductive step.

B Proof of Theorem 2

Proof. We find it useful to define

Φ(RT (I)) =
∑

a∈A(I)

(
RT (I, a)2+

)
(15)

We prove inductively on T that

Φ(RT (I)) ≤ C2
(
∆(I)

)2
A(I)T (16)

If (16) holds, then R(I) ≤ C∆(I)
√
|A(I)|

√
T . On iteration 1, regret matching

calls for probability 1
|A(I)| on each action, which is above the threshold. Thus,

dynamic thresholding produces identical strategies as vanilla regret matching,
so from Theorem 2.1 in [6], (16) holds.

We now assume (16) holds for iteration T − 1 and consider iteration T > 1.
Vanilla regret matching calls for a probability vector σT (I) that, if played, would
result in (16) holding for T . Dynamic thresholding creates a new strategy vector

σ̂T (I) in which σ̂T (I, a) = 0 if σT (I, a) ≤ C2−1
2C|A(I)|2

√
T

. After reducing actions

XVII

to zero probability, the strategy vector is renormalized. Let δ(a) = σ̂T (I, a) −
σT (I, a) and δ = maxa∈A(I) δ(a). In the worst case, all but one action is reduced
to zero and the probability mass is added to the single remaining action. Thus,

|δ(a)| ≤ C2−1
2C|A(I)|

√
T

.

After playing σ̂T (I, a) on iteration T , we have

Φ(RT (I)) ≤
∑

a∈A(I)

(
RT−1(I, a) + rT (I, a)

)2
+

From Lemma 7 in [18], we get

Φ(RT (I)) ≤
(
Φ(RT−1(I)) + 2

∑
a

(RT−1+ (I, a)rT (I, a)) + rT (I, a)2
)

Φ(RT (I)) ≤
(
Φ(RT−1(I)) + 2

∑
a

(RT−1+ (I, a)rT (I, a)) + (∆(I))2
)

From (4) and (7),

rT (I, a) = vT (I, a)−
∑

a′∈A(I)

(
σ̂T (I, a′)vT (I, a′)

)
Since σ̂T (I, a) = σ(I, a)T + δ(a), we get

rT (I, a) = vT (I, a)−
∑

a′∈A(I)

((
σT (I, a′) + δ(a)

)
vT (I, a′)

)
Regret matching satisfies the Blackwell condition [1] which, as shown in Lemma
2.1 in [6], means∑

a∈A(I)

(
(RT−1+ (I, a)

(
vT (I, a) −

∑
a′∈A(I)

(
σT (I, a′)vT (I, a′)

)))
≤ 0

Thus, we are left with∑
a∈A(I)

(RT−1+ (I, a)rT (I, a)) ≤ |δ|
∑

a∈A(I)

(
RT−1+ (I, a)

∑
a′∈A(I)

(
vT (I, a′)

))
Since vT (I, a′) ≤ ∆(I), this leads to

Φ(RT (I)) ≤
(
Φ(RT−1(I))+2|δ|

∑
a∈A(I)

(
RT−1+ (I, a)∆(I)|A(I)|

)
+(∆(I))2|A(I)|

)
By the induction assumption,∑

a∈A(I)

(
RT−1+ (I, a))2 ≤ C2(∆(I))2|A(I)|(T − 1)

XVIII

so by Lemma 5 in [18]∑
a∈A(I)

RT−1+ (I, a) ≤ C∆(I)|A(I)|
√
T − 1

This gives us

Φ(RT (I)) ≤
(
Φ(RT−1(I)) + (∆(I))2|A(I)|

(
2C|δ||A(I)|

√
T − 1 + 1

))
Since |δ| < C2−1

2C|A(I)|
√
T

this becomes

Φ(RT (I)) ≤
(
Φ(RT−1(I)) + C2(∆(I))2|A(I)|

)
Substituting the bound of Φ(RT (I)) we get

Φ(RT (I)) ≤ C2(∆(I))2|A(I)|T

This satisfies the inductive step.

