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Abstract
We initiate the study of equilibrium refinements
based on trembling-hand perfection in extensive-
form games with commitment strategies, that is,
where one player commits to a strategy first. We
show that the standard strong (and weak) Stackel-
berg equilibria are not suitable for trembling-hand
perfection, because the limit of a sequence of such
strong (weak) Stackelberg commitment strategies
of a perturbed game may not be a strong (weak)
Stackelberg equilibrium itself. However, we show
that the universal set of all Stackelberg equilibria
(i.e., those that are optimal for at least some fol-
lower response function) is natural for trembling-
hand perfection: it does not suffer from the prob-
lem above. We also prove that determining the
existence of a Stackelberg equilibrium—refined or
not—that gives the leader expected value at least ν
is NP-hard. This significantly extends prior com-
plexity results that were specific to strong Stackel-
berg equilibrium.

1 Introduction
In interactions, it can make a significant difference if one
player can commit to a strategy first. This was originally
studied in the context of using pure strategies to commit to
quantity [Cournot, 1838] or price [Bertrand, 1883] in deter-
ring market entry [von Stackelberg, 1934]. Further power
can be gained by committing to a mixed (i.e., randomized)
strategy [Conitzer and Sandholm, 2006; von Stengel and Za-
mir, 2010]. In a mixed Stackelberg equilibrium (SE), a leader
commits to a (potentially mixed) strategy, and a follower
then best responds. When multiple follower actions are best-
responses, tie-breaking needs to be considered. Two notable
cases are the strong (i.e., optimistic) SE (SSE) and weak (i.e.,

pessimistic) SE (WSE), in which the follower breaks ties to
maximize or minimize, respectively, the leader’s utility [Bre-
ton et al., 1988]. The SE is now a well-known solution con-
cept in game theory, and has been deployed to practical set-
tings such as airport patrol scheduling, air marshal allocation
to flights, and train security [Tambe, 2011; Yin et al., 2012].
Usually, these scenarios are modeled as specialized classes of
normal-form games, and an SSE is sought. An SSE and a
WSE in 2-player normal-form games can be found in poly-
nomial time [Conitzer and Sandholm, 2006; von Stengel and
Zamir, 2010]. This is Poly-APX-complete in Bayesian games
when the number of types is not fixed [De Nittis et al., 2018].

The Stackelberg paradigm can also be applied to extensive-
form games (EFGs). EFGs can provide a richer description
of a strategic situation. They can be used to model sequen-
tial multi-step settings, such as patrol scheduling with interac-
tion between patrols and adversaries. Letchford and Conitzer
[2010] show that finding an SSE in an EFG is NP-hard. Fur-
thermore, because Bayesian games are a special case of EFGs
with Nature moves the results of De Nittis et al. [2018] im-
ply Poly-APX hardness for EFGs with Nature moves as well.
Worst-case exponential-time algorithms have been developed
for computing an SSE [Bošanskỳ and Cermak, 2015; Kroer
and Sandholm, 2015; Cermak et al., 2016]. Kroer et al.
[2018] propose robust SEs, where a solution is found against
the worst-case follower’s utility model.

In this paper we extend the extensive-form Stackel-
berg paradigm to settings where players might take off-
equilibrium actions with low-but-non-zero probability (a.k.a.
trembles). Trembles are common in other types of games for
refining solution concepts to play well even in parts of the
game tree that are reached only through one or more mis-
takes [van Damme, 1991]. Trembles that cause every infor-
mation set of the game to be reached with positive probability
guarantee off-equilibrium-path optimality. In extensive-form
games, the two best-known trembling-hand-perfection-based
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Figure 1: (a) Any strategy at node l.2 is optimal in an SE, while
only a4` is optimal off the equilibrium path. (b) Any strategy at node
l.2 is optimal in an SE, while only a4` is optimal off the equilibrium
path. (c) Any strategy profile at nodes l.1 and f.2 is optimal in an
SE, while only (a2` , a

4
f ) is optimal off the equilibrium path.

refinements of Nash equilibrium (NE) are the quasi-perfect
equilibrium (QPE) [van Damme, 1984], where players play
their best response at every information set taking into ac-
count only the future trembles of the opponent(s), and the
extensive-form perfect equilibrium (EFPE) [Selten, 1975], in
which they account for future trembles of themselves also.1

SEs, including SSEs and WSEs, may be suboptimal in
presence of trembles. In particular, an SE may be subopti-
mal due to a leader’s mistake (Fig. 1(a)), a follower’s mistake
(Fig. 1(b)), or both (Fig. 1(c)). The robust SE of Kroer et al.
[2018] does not guard against trembles either. Consider the
game in Fig. 1(b): the leader should commit to (a1

` , a
4
`) in

order to get utility 10. However, (a1
` , a

3
`) also achieves util-

ity 10, but it is a worse strategy when trembles may happen.
Adding payoff uncertainty on the (1, 0)-payoff node such that
the follower has a utility function where she picks a1

f does not
solve this problem. The robust solution would pick a2

` ini-
tially, since the worst-case follower picks a1

f . In contrast, our
perturbed SEs will uniquely identify (a1

` , a
4
`) as the solution.

Contributions of this paper. We extend the extensive-
form Stackelberg paradigm to settings where players might
tremble. We show that for every perturbation scheme, the set
of limit points of SEs for perturbed games with vanishing per-
turbations is always a nonempty subset of the SEs of the non-
perturbed game. This does not hold when focusing only on
SSEs (or WSEs): for a given game, the set of SSEs (or WSEs)
in the non-perturbed game may be disjoint from the set of
limit points of SSEs (or WSEs) in the perturbed game. We
resort to the perturbation schemes used for QPEs and EFPEs
to define quasi-perfect SEs (QP-SEs) and extensive-form per-
fect SEs (EFP-SEs)—and their strong and weak versions—as
refinements of SE in which, at every information set, the fol-
lower plays a best response and the leader’s commitment is
optimal. We prove that the sets of SSEs and QP-SSEs may
be disjoint and that the same holds for the sets of SSEs and
EFP-SSEs and for the sets of WSEs and EFP-WSEs. Further-
more, we show that the problem of deciding the existence of
an SE—refined or not—that gives the leader expected value
at least ν is NP-hard.

1A further NE refinement, defined on the normal form and known
as the normal-form perfect equilibrium (NFPE), does not guarantee
off-equilibrium-path optimality. The same holds for SE: in Fig. 1(c),
when uniform trembles are applied over the normal-form actions, an
SE requires players to pick a1` , while the only optimal choice is a2` .

2 Preliminaries

Following the notation in the textbook by Shoham and
Leyton-Brown [2008], we define a Stackelberg extensive-
form game (SEFG) with imperfect information as a tuple
(N,H,Z,A, ρ, χ, u`, uf , I`, If ), where: N = {`, f} is the
set of players (` being the leader and f the follower), H =
H`∪Hf , withH` andHf being finite sets of leader’s and fol-
lower’s nonterminal decision nodes, respectively, Z is a finite
set of terminal nodes, A is a finite set of actions, ρ : H → 2A

is the action function that assigns to each nonterminal node a
set of available actions, χ : H ×A→ H ∪Z is the successor
function that defines the node that is reached when an action
is performed in a nonterminal node (if possible), u` and uf ,
with u`, uf : Z → R, specify the leader’s and follower’s pay-
offs, respectively, in each terminal node, and I` and If define
a partition of H` and Hf , respectively, into information sets,
i.e., groups of nonterminal nodes that are indistinguishable by
the player. For every player i ∈ N , information set Ii ∈ Ii,
and nonterminal nodes h, h′ ∈ Ii, it must be the case that
ρ(h) = ρ(h′), otherwise the nodes in Ii would not be indis-
tinguishable for player i. Therefore, we can overload notation
and let ρ(Ii) be the set of actions available to player i in all
nodes belonging to Ii ∈ Ii. Moreover, we focus on perfect-
recall games in which no player forgets what she did or knew
in the past, i.e., for every i ∈ N and Ii ∈ Ii, all decision
nodes belonging to Ii share the same sequence of player i’s
moves on their paths from the root.

In an imperfect-information extensive-form game, a
player’s pure strategy (akin to a contingent plan in AI termi-
nology) specifies an action at each information set in which it
is the player’s turn to move. A mixed strategy is a probability
distribution over a player’s pure strategies. In games with per-
fect recall, we can restrict the attention to behavioral strate-
gies [Kuhn, 1953], which define, for every player i ∈ N and
information set Ii ∈ Ii, a probability distribution over the ac-
tions ρ(Ii) available at Ii. For every i ∈ N , let βi be a player
i’s behavioral strategy, where βi : Ii ∈ Ii 7→ ∆(ρ(Ii)). For
simplicity, we use βi(a) to denote the probability that βi as-
signs to action a ∈ A. In the following, we overload the no-
tation and use ui(β`, βf ) to denote player i’s expected utility
when β` and βf are played.

Perfect-recall extensive-form games admit an equiva-
lent representation, the sequence form [Romanovskii, 1962;
Koller et al., 1996; von Stengel, 1996]. A sequence for player
i ∈ N , defined by a node h ∈ H ∪ Z, is the ordered set
of player i’s actions on the path from the root to h. Let Q`
and Qf be the sets of leader’s and follower’s sequences, re-
spectively. As usual, we assume that each Qi, for i ∈ N ,
contains a fictitious sequence q∅ that corresponds to the root
node. Moreover, given a sequence q ∈ Qi and an action
a ∈ A, we denote as qa the extended sequence obtained by
appending a to q. With an overloading of notation, u` and
uf , with u`, uf : Q` × Qf → R, denote players’ utilities
in the sequence form, i.e., u`(q`, qf ) and uf (q`, qf ) are the
leader’s and the follower’s payoff, respectively, in the termi-
nal node reached when playing the actions in q` and qf . If
q` and qf do not identify a terminal node, then u`(q`, qf )
and uf (q`, qf ) are assumed to be zero. In the sequence



form, a strategy, called a realization plan, assigns each se-
quence with its probability of being played. For i ∈ N ,
let ri : Qi → R be a player i’s realization plan. In order
to be well-defined, a realization plan ri must be such that
ri(q∅) = 1 and, for every Ii ∈ Ii and sequence q leading
to Ii, ri(q) =

∑
a∈ρ(Ii) ri(qa). In the following, we denote

with L and F the strategy polytopes of all leader’s and fol-
lower’s realization plans, respectively. Overloading the nota-
tion, we use ui as if it were defined over L × F instead of
Q` ×Qf , denoting player i’s expected utility.

Given a realization plan ri, we can easily recover an equiv-
alent behavioral strategy βi by setting βi(a) = ri(qa)

ri(q)
, where

q is the sequence leading to the information set in which a is
played. The equivalence is in terms of probabilities that the
two strategies induce on terminal nodes. Similarly, every βi
has an equivalent ri.

Stackelberg solution concepts. A Stackelberg equilib-
rium prescribes the leader to commit to a utility-maximizing
strategy, given that the follower best-responds to it. Given
any strategy for the leader, r` ∈ L, a best response
for the follower is any strategy rf ∈ F that maximizes
uf (r`, rf ) =

∑
q`∈Q`,qf∈Qf

r`(q`)rf (qf )uf (q`, qf ). Let
BR(r`) = arg maxrf∈F uf (r`, rf ) be the set of follower’s
best-responses to r` ∈ L. If there are multiple follower best
responses to the leader’s strategy, in order for the leader to de-
termine an optimal commitment, the leader needs to make an
assumption about which one of the follower’s best responses
the follower will choose. A follower response function spec-
ifies how the follower responds to any possible (mixed) strat-
egy of the leader.
Definition 1. A follower response function is a function τ :
L→ F such that τ(r`) ∈ BR(r`) for all r` ∈ L.

Two classes of follower response functions are popular in
the literature [von Stengel and Zamir, 2010]:
• strong (i.e., optimistic) follower response functions τ st

break ties in favor of the leader: u`(r`, τ
st(r`)) ≥

u`(r`, rf ) ∀rf ∈ BR(r`), r` ∈ L;
• weak (i.e., pessimistic) follower response functions
τwe break ties to minimize the leader’s utility:
u`(r`, τ

we(r`)) ≤ u`(r`, rf ) ∀rf ∈ BR(r`), r` ∈ L.
We formally define the concept of Stackelberg equilibrium.

Definition 2. Given an SEFG and a follower response func-
tion τ , a τ -Stackelberg equilibrium (τ -SE), if it exists, is
any leader-utility-maximizing strategy profile, that is, any
(r`, τ(r`)) ∈ L × F such that u`(r′`, τ(r′`)) ≤ u`(r`, τ(r`))
for all r′` ∈ L.
Definition 3. Given an SEFG, (r`, rf ) is a Stackelberg equi-
librium (SE) if there exists a follower response function τ
such that (r`, rf ) is a τ -SE.

The following are two well-known examples of SEs.
Definition 4. A strong Stackelberg equilibrium (SSE) is a τ st-
SE.2 A weak Stackelberg equilibrium (WSE) is a τwe-SE.

It is known that an SSE always exists, while a WSE might
not exist [von Stengel and Zamir, 2010].

2Some authors only mean SSE when they talk about Stackelberg
equilibrium [Bošanskỳ et al., 2017].

3 Game Perturbation Schemes
As discussed in the introduction, many of the most important
Nash equilibrium refinement concepts are based on the idea
that the player and/or opponent makes mistakes at every de-
cision point (i.e., information set) with some small, vanishing
probability. In this section, we introduce a more general fam-
ily of such perturbation, of which the typical prior schemes,
EFPEs and QPEs, are subfamilies. Then in the following sec-
tions we develop theory for the whole family and the subfam-
ilies in the context of Stackelberg extensive-form games.3

In the following definition, X is any strategy polytope,
where no distinction is made based on to which player the
polytope belongs.

Definition 5. An ε-perturbation scheme for a strategy poly-
tope X is a function ε 7→ X(ε) defined over ε ∈ (0, 1] such
that
• X(ε) ⊆ X(ε′) for all ε ≥ ε′, and
• cl(

⋃
ε∈(0,1]X(ε)) = X .

The closure operation cl(·) assumes that a topology is de-
fined for the space containing X . We will always assume that
the strategy polytopes X live in a Euclidean space where the
usual metric induces open balls Bδ(x̄) = {x : ‖x− x̄‖ < δ}.
The classic EFPE- and QPE-type perturbations (which we de-
fine formally in the next section) are two notable subfamilies
of ε-perturbation schemes.

As a direct consequence of the conditions in Definition 5,
every point in X is eventually “reached” by X(ε) when ε is
small enough:

Lemma 1. Given x̄ ∈ X and δ > 0, there exists x̂ ∈ X and
ε̄ ∈ (0, 1] such that x̂ ∈ X(ε) ∩Bδ(x̄) for all ε ≤ ε̄.

A perturbed Stackelberg game is now simply an SEFG aug-
mented with a perturbation scheme for each player:

Definition 6. A perturbed SEFG is an SEFG, together with
two ε-perturbation schemes ε 7→ L(ε) and ε 7→ F (ε) for the
leader’s and the follower’s strategy polytope, respectively.

Given a perturbed SEFG (Γ, ε 7→ L(ε), ε 7→ F (ε)), we de-
note by Γ(ε) the SEFG obtained from Γ by letting the leader
and follower strategy polytopes be L(ε) and F (ε), respec-
tively.

4 EFP and QP Perturbations
In this section we analyze perturbed SEFGs with EFPE-
and QPE-type perturbations. They are SEFG ε-perturbation
schemes with specific structure.

In an EFP-ε-perturbation scheme, each player takes into
account the possibility that all players, including herself, may
make mistakes in the future. Players are constrained to plac-
ing at least a minimum probability α on every action at each
information set, and those lower bounds α are functions of ε
that go to zero as ε→ 0. A formal definition, using sequence-
form strategy polytopes, follows.

3Our perturbation family applies to any strategy polytope, not
just Stackelberg extensive-form games, and not even just the se-
quence form. That said, in this paper, we assume that the game
is in sequence form.



Definition 7. An EFP-ε-perturbation scheme for a sequence-
form strategy polytope X is an ε-perturbation scheme ε 7→
XEFP(ε) where a strategy r belongs to XEFP(ε) if
• r(q) ≥ α(q, ε)r(q′) ∀ q, q′ ∈ Q : q = q′a;
• α(q, ε) ≥ 0 ∀ q ∈ Q and limε→0 α(q, ε) = 0 ∀ q ∈ Q;
• ∑q∈Q|q=q′a α(q, ε) ≤ 1 ∀ q′ ∈ Q.

In a QP-ε-perturbation scheme, each player takes into con-
sideration only the possibility of opponent’s errors, assuming
she will not make mistakes in future. This is modeled by re-
quiring that sequences q be played with probabilities at least
ω(q, ε), which are polynomials of ε whose degrees increase
as sequences are extended with additional actions. Formally:

Definition 8. A QP-ε-perturbation scheme for a sequence-
form strategy polytope X is an ε-perturbation scheme ε 7→
XQP(ε) where a strategy r belongs to XQP(ε) if
• r(q) ≥ ω(q, ε) ∀ q ∈ Q;
• ω(q, ε) ≥ 0 ∀ q ∈ Q and limε→0 ω(q, ε) = 0 ∀ q ∈ Q;
• maxdegω(q′, ε) < mindegω(q, ε) ∀q, q′ ∈ Q : q = q′a.

Now, we introduce new solution concepts defined as limit
points of sequences of SSEs and WSEs for perturbed game in-
stances Γ(ε) as ε→ 0, given particular perturbation schemes.

Definition 9. Given a perturbed SEFG (Γ, ε 7→ LEFP(ε), ε 7→
F EFP(ε)), (r`, rf ) is an EFP-SSE (resp., EFP-WSE) if it is a
limit point of SSEs (resp., WSEs) of Γ(ε) as ε→ 0.

Definition 10. Given a perturbed SEFG (Γ, ε 7→
LQP(ε), ε 7→ FQP(ε)), (r`, rf ) is a QP-SSE (resp., QP-WSE)
if it is a limit point of SSEs (resp., WSEs) of Γ(ε) as ε→ 0.

Since SSEs always exist in an SEFG, and since the strat-
egy spaces are compact sets, EFP-SSEs and QP-SSEs always
exist. The same is not true for EFP- and QP-WSEs, as a WSE
need not exist in an SEFG.

The following observation shows that the sets of EFP- or
QP-SSEs can be disjoint from the set of SSEs, thereby show-
ing that the EFP- and QP-SSE solution concepts are not re-
finements of the SSE solution concept!

Observation 1. There are perturbed SEFGs in which an
EFP-SSE is not an SSE, a QP-SSE is not an SSE, and an
EFP-WSE is not a WSE.

Proof. Consider the game of Figure 2(a). The SSE prescribes
the leader and the follower to play a1

` and a1
f , respectively.

On the other hand, in any perturbed instance the leader has
to place positive probability on a2

` , and the follower’s best
response is a2

f .
Consider the game of Figure 2(b). The follower plays

a1
fa

3
f , while in any perturbed instance resulting from an EFP-

ε-perturbation scheme, the follower has to put positive proba-
bility on a4

f and her best response at the root becomes a2
f .

We leave as an open problem the determination of whether
a QP-WSE is also a WSE (assuming it exists) or not.

5 Stackelberg Trembling-Hand Refinements
As we showed in the previous section, SSEs and WSEs are
not refinable by trembling. In this section we remedy this
problem by showing that the universal set of all Stackelberg
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Figure 2: Game that we use to prove that perturbed SSEs and WSEs
are not refinements of SSEs and WSEs.

equilibria is natural for trembling-hand perfection: it does not
suffer from the problem above. In other words, the set of
SEs is closed under trembling-hand refinement. Formally, we
prove that any limit point of SEs for the perturbed game Γ(ε)
as ε→ 0 is an SE of the original, unperturbed SEFG Γ.

Theorem 1. Let {εi} → 0 and let {(r`i, rf i)} be a sequence
of SEs for the perturbed game instances {Γ(εi)}. Then:
• {(r`i, rf i)} has at least one limit point, and
• all limit points of {(r`i, rf i)} are SEs.

We now present three lemmas, and at the end of this section
we present the proof of the theorem using these lemmas.

One can think of SEs as “minimally-rational” for the
leader: any strategy for the leader is acceptable as long as
there is no other strategy for the leader that is better no mat-
ter how the follower breaks ties. We now formalize this by
giving the following alternative characterization of SEs.

Lemma 2. A strategy profile (r`, rf ) is an SE if and only if
rf ∈ BR(r`) and for all r′` ∈ L there exists r′f (r′`) ∈ BR(r′`)

such that u`(r′`, r
′
f (r′`)) ≤ u`(r`, rf ).

Proof. (⇐) Construct the follower response function τ de-
fined as τ(r`) = rf and τ(r′`) = r′f (r′`). Then, for all r′` ∈ L,
u`(r

′
`, τ(r′`)) ≤ u`(r`, τ(r`)), and thus (r`, rf ) is a τ -SE.

(⇒) Assume that (r`, rf ) is a τ -SE. Then rf = τ(r`) ∈
BR(r`). Furthermore, by definition of τ -SE, for all r′` ∈ L,
r′f = τ(r′`) is such that u`(r′`, r

′
f ) ≤ u`(r`, τ(r`)) =

u`(r`, rf ).

Lemma 3. Let {εi} → 0 and let {(r`i, rf i)} be a sequence
of strategy profiles for the SEFG instances {Γ(εi)}. Then
{(r`i, rf i)} has at least one limit point.

Proof. The conclusion follows directly from the Bolzano-
Weierstrass theorem since L(ε) × F (ε) ⊆ L × F for all
ε ∈ (0, 1] and L× F is a compact set.

Lemma 4. Let {εi} → 0 and let {(r`i, rf i)} be a sequence
of strategy profiles for the SEFG instances {Γ(εi)} where rf i
is a best-response to r`i. Then any limit point (r̄`, r̄f ) of
{(r`i, rf i)} is such that r̄f is a best-response to r̄`.

Proof. Existence of at least one limit point for {(r`i, rf i)}
is guaranteed by Lemma 3. Without loss of generality, as-
sume that (r`i, rf i) → (r̄`, r̄f ) ∈ L × F. Suppose, for
contradiction, that r̄f is not a best response to r̄` which
means that there exists r̂f ∈ F such that uf (r̄`, r̂f ) >
uf (r̄`, r̄f ). By continuity of uf , there exists δ > 0 such
that uf (r>` , r

>
f ) > uf (r<` , r

<
f ) for all (r>` , r

>
f ) ∈ Bδ(r̄`) ×

Bδ(r̂f ) and (r<` , r
<
f ) ∈ Bδ(r̄`) × Bδ(r̄f ). From Lemma 1



we know that there exist ε̄ ∈ (0, 1] and r̃f such that r̃f ∈
F (ε) ∩ Bδ(r̂f ) for all ε ≤ ε̄. Considering the three converg-
ing sequences εi → 0, r`i → r̄` and rf i → r̄f , we know that
there exists an index j ∈ N such that εj ≤ ε̄, r`j ∈ Bδ(r̄`),
and rf j ∈ Bδ(r̄f ). Furthermore, from εj ≤ ε̄ we de-
duce that (r`j , r̃f ) ∈ L(εj) × F (ε̄) ⊆ L(εj) × F (εj). Thus
(r`j , r̃f ) is a valid strategy profile for Γ(εj). Yet, (r`j , r̃f ) ∈
Bδ(r̄`) × Bδ(r̂f ) and (r`j , rf j) ∈ Bδ(r̄`) × Bδ(r̄f ), imply-
ing uf (r`j , r̃f ) > uf (r`j , rf j) and contradicting the fact that
rf j is a best response to r`j .

Proof of Theorem 1. The first bullet is by Lemma 3. We now
prove the second one. Let BRΓ(r`) and BRΓ(εi)(r`) be the
sets of follower’s best-responses to r` in Γ and Γ(εi), respec-
tively. Without loss of generality, assume that {r`i, rf i} →
(r̄`, r̄f ) ∈ L × F . By Lemma 4, r̄f is a best response to r̄`.
Therefore, by Lemma 2, we only need to prove that ∀r′` there
exists r′f ∈ BRΓ(r′`) with u`(r′`, r

′
f ) ≤ u`(r̄`, r̄f ).

Suppose for contradiction that there exists r′` such that
u`(r

′
`, r

′
f ) > u`(r̄`, r̄f ) for all r′f ∈ BRΓ(r′`). Let gi be the

family of functions with the property that, for all i, gi(r`) is
equal to one of the rf ∈ BRΓ(εi)(r`) such that u`(r`, rf ) ≤
u`(r`i, rf i); existence is guaranteed by Lemma 2 and the fact
that (r`i, rf i) is an SE by hypothesis. Construct any sequence
{(r′`i, r′f i)} → (r′`, r̂

′
f ) such that (r′`i, r

′
f i

) are valid profiles
for Γ(εi) with r′f i = gi(r

′
`i). From Lemma 4 we know

that r̂′f ∈ BRΓ(r′`). However, u`(r′`i, r
′
f i

) ≤ u`(r`i, rf i),

and by continuity we have u`(r′`, r̂
′
f ) ≤ u`(r̄`, r̄f ). But then

r̂′f ∈ BRΓ(r′`) while having value no larger than u`(r̄`, r̄f ),
contradicting our assumption.

Remark. Because SSEs and WSEs are SEs, we have from
Theorem 1 that the limit of perturbed SSEs (and perturbed
WSEs when they exist) is guaranteed to be an SE. This means
that, even though the limits are not SSEs or WSEs in general,
they preserve minimal rationality of the commitment—as per
Lemma 2.

6 Computational Complexity
In this section we study the computational complexity of de-
ciding the existence of an SE (refined or not) that gives the
leader expected value at least ν. This problem (in the unre-
fined case) is known to be polynomial in constant-sum set-
tings, where all SEs give the same expected utility to the
leader, equal to the value of the game. We show that this
problem is NP-hard in general-sum settings, using a reduc-
tion from 3SAT. In particular, given a 3SAT formula, we con-
struct a polynomially-large SEFG instance such that:
• If the 3SAT formula is satisfiable, all SEs of the SEFG

give an expected utility of 1 to the leader.
• If the 3SAT formula is not satisfiable, all SEs of the

SEFG give an expected utility strictly less than 1 to the
leader. 4

4Our reduction is based on the construction of Letchford and
Conitzer [2010]. However, their construction only proves the NP-
hardness for the special case of SSEs, since, whenever the 3SAT

Since the 3SAT decision problem is NP-hard [Garey and
Johnson, 1979], this implies the following theorems.
Theorem 2. Deciding the existence of an SE (refined or not)
that gives the leader expected value at least ν in an SEFG is
NP-hard.

Theorem 3. Given a follower response function τ , deciding
the existence of a τ -SE (refined or not) that gives the leader
expected value at least ν in an SEFG is NP-hard.

6.1 SEFG Instance Construction
Definition 11. We are given a 3SAT formula (C, V ), whereC
is a set of 3-literal clauses defined over a set V of variables,
with |V | = n. We let the variable corresponding to literal
lk be denoted by v(lk). We construct a perfect-recall SEFG
Γ(C, V ) as follows:
• The root is h0

f ∈ Hf such that ρ(h0
f ) = {atf} ∪ {avf :

v ∈ V } ∪ {aφf : φ ∈ C}, χ(h0
f , a

x
f ) = h1,x

` ∈ H`.
• All nodes h1,x

` belong to I ∈ I`. The available actions
at the information set are ρ(I) = {av` : v ∈ V }.
• For all h1,v

` and aw` (v, w ∈ V ), we let χ(h1,v
` , aw` ) =

zvw ∈ Z. Furthermore, u`(zvw) = 0, and uf (zvw) =(
n+2

(n+1)2 + 1
)
− 1{v = w}.

• For all av` (v ∈ V ), χ(h1,t
` , av` ) = h2,v

f ∈ Hf , ρ(h2,v
f ) =

{av,Tf , av,Ff }, χ(h2,v
f , av,xf ) = h3,vx

` ∈ Iv ∈ I`, ρ(Iv) =

{av,T` , av,F` }, χ(h3,vx
` , av,y` ) = zvxy ∈ Z, u`(zvxy) =

uf (zvxy) = 1{x = y}.
• For all h1,φ

` and av` (φ ∈ C, v ∈ V ),

u`(zφv) = 0, uf (zφv) = 0, χ(h2,φv
` , av,x` ) = zφvx ∈ Z,

χ(h1,φ
` , av` ) =

{
h2,φv
` ∈ Iv if v is in φ
zφv ∈ Z otherwise,

and u`(zφvx) = 0, uf (zφvT) = n+1
3 (resp., uf (zφvF) =

n+1
3 ) if v appears negated (resp., not negated) in φ,

uf (zφvx) = 0 otherwise.

Figure 3 shows an example of a game Γ(C, V ). Intuitively,
the leader looks for a strategy such that the follower’s best-
response is to play action atf , thus achieving an expected util-
ity of 1. The leader’s strategy at information sets Iv (v ∈ V )
defines a truth assignment to the variables such that, when-
ever a clause φ ∈ C is not satisfied, then the follower best-
responds playing action aφf . Thus, the leader’s goal is to find a
strategy that defines a truth assignment satisfying all clauses.
First we show that when the 3SAT formula is satisfiable there
exists a leader’s strategy that guarantees a payoff of 1.
Lemma 5. If (C, V ) is satisfiable, then there exists a leader’s
strategy β` such that for all follower’s best-responses βf ∈
BR(β`) it holds u`(β`, βf ) = 1.

Proof. Let T be a truth assignment satisfying all clauses.
Take β` such that β`(av` ) = 1

n ∀ v ∈ V and β`(a
v,T
` ) = 1 if

formula is satisfiable, there are SEs of the SEFG that provide the
leader with an expected utility strictly less than 1. We suitably mod-
ify players’ payoffs so that the result holds for all SEs.
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Figure 3: Game Γ(C, V ), where V = {v1, . . . , vn}, C = {φ1, . . . , φm}, and clause φ ∈ C is such that φ = viv̄jvk. Hollow nodes belong
to the leader, while solid ones belong to the follower.

T (v) = T, while β`(a
v,F
` ) = 1 whenever T (v) = F. Clearly,

at each node h2,v
f , the unique follower’s best-response is to

play the action corresponding to that played by the leader in
Iv . As a result, the follower gets a utility of 1 by playing atf at
the root, i.e, uf (β`, a

t
f ) = 1. Now, let us prove that playing

action atf at the root is the unique follower’s best-response to
β`. Let us consider actions avf , for all v ∈ V , we have:

uf (β`, a
v
f ) =

(
n+ 2

(n+ 1)2
+ 1

)
n− 1

n
+

(
n+ 2

(n+ 1)2

)
1

n

=

(
n+ 2

(n+ 1)2
+ 1

)
− 1

n
< 1.

Thus, playing avf is not a best-response, for all v ∈ V .
Now, we analyze actions aφf , for all φ ∈ C. Since T sat-
isfies all clauses, each clause φ ∈ C has a literal lk that
is true under T and, thus, β`(a

v(lk),T
` ) = 1 if lk requires

the corresponding variable to be true, or β`(a
v(lk),F
` ) =

1 if it requires false. Assume, without loss of general-
ity, that lk requires the variable to be true for all lk ∈
φ. By playing aφf , the follower gets utility uf (β`, a

φ
f ) =

β`(a
v(l1)
` )β`(a

v(l1),F
` )n+1

3 + β`(a
v(l2)
` )β`(a

v(l2),F
` )n+1

3 +

β`(a
v(l3)
` )β`(a

v(l3),F
` )n+1

3 . Three cases are possible.

1. There exists unique lk ∈ φ such that β`(a
v(lk),T
` ) = 1, for

instance literal l1. Thus, since β`(a
v(l2),F
` ), β`(a

v(l3),F
` ) ≤

1, it holds uf (β`, a
φ
f ) ≤ n+1

3 (β`(a
v(l2)
` ) + β`(a

v(l3)
` )).

Also, β`(av` ) = 1
n ∀v ∈ V implies uf (β`, a

φ
f ) <

n+1
3

(
1− 1

n (n− 2)
)

= 2
3
n+1
n < 1, for n sufficiently

large (n > 2).

2. Exactly two literals lk in φ are such that β`(a
v(lk),T
` ) = 1.

With a similar reasoning, we conclude that uf (β`, a
φ
f ) <

n+1
3

(
1− 1

n (n− 1)
)
< 1, for every n.

3. β`(a
v(lk),T
` ) = 1 for all literals lk ∈ φ, and uf (β`, a

φ
f ) <

1. Therefore, it must be uf (β`, a
φ
f ) < 1 and aφf is not a

follower’s best-response to β`.

In conclusion, the unique follower’s best-response is to play
atf at node h0

f , and u`(β`, atf ) = 1.

Given that 1 is the maximum leader’s payoff in Γ(C, V ),
we can conclude the following:

Corollary 1. If (C, V ) is satisfiable, then all SEs of Γ(C, V )
give the leader an expected utility of 1.

We now show that a utility of 1 for the leader implies the
existence of a truth assignment satisfying the 3SAT formula.

Lemma 6. If there exists a leader’s strategy β` and a fol-
lower’s best-response βf ∈ BR(β`) such that u`(β`, βf ) =
1, then (C, V ) is satisfiable.

Proof. Since u`(β`, βf ) = 1, it must be the case that in βf
the follower plays atf at the root node h0

f , or else the leader
would not get a utility of 1. Moreover, the leader’s strategy
β` must be such that either β`(a

v,T
` ) = 1 or β`(a

v,F
` ) = 1, for

every v ∈ V , and, at each node h2,v
f , the follower must play

the action corresponding to that played by the leader in Iv .
Because atf is a best response, it must be that uf (β`, a

v
f ) ≤ 1

for every v ∈ V , otherwise atf would not be a follower best
response. From uf (β`, a

v
f ) ≤ 1, it follows that uf (β`, a

v
f ) =

n+2
(n+1)2 + 1 − β`(av` ) ≤ 1, so that β`(av` ) ≥ n+2

(n+1)2 >
1

n+1

for every n. For every φ ∈ C we have uf (β`, a
φ
f ) ≤ 1,

otherwise playing atf is not a best response for the follower.
As a consequence, for every φ ∈ C, there must exist at
least one literal lk ∈ φ such that β`(a

v(lk),T
` ) = 1 if lk re-

quires true, or β`(a
v(lk),F
` ) = 1 if lk requires false. By con-

tradiction, suppose such a literal lk does not exist, and as-
sume, without loss of generality, that lk requires true for all
lk ∈ φ. Thus, uf (β`, a

φ
f ) = β`(a

v(l1)
` )β`(a

v(l1),F
` )n+1

3 +

β`(a
v(l2)
` )β`(a

v(l2),F
` )n+1

3 + β`(a
v(l3)
` )β`(a

v(l3),F
` )n+1

3 =
n+1

3 (β`(a
v(l1)
` ) + β`(a

v(l2)
` ) + β`(a

v(l3)
` )) > 1, as β`(av` ) >

1
n+1 for all v ∈ V . This contradicts the fact that uf (β`, a

φ
f ) ≤

1. It follows that φ must be satisfied. Since φ was arbi-
trary, this shows that all clauses are satisfied. In conclusion,
it follows that a variable assignment T such that T (v) = T



if β`(a
v,T
` ) = 1, while T (v) = F whenever β`(a

v,F
` ) = 1,

satisfies all clauses.

It directly follows from Lemma 6 that:
Corollary 2. If (C, V ) is not satisfiable, then all SEs of
Γ(C, V ) give an expected utility strictly smaller than 1 to the
leader.

7 Conclusions
We initiated the study of equilibrium refinement based
on trembling-hand perfection in Stackelberg extensive-form
games, that is, games where one player commits to a strat-
egy first. To our knowledge, this is the first solution concept
that guarantees off-equilibrium-path optimality in extensive-
form Stackelberg games. We studied the equilibrium space of
all Stackelberg equilibria (containing both strong and weak
Stackelberg equilibria), and showed that it is complete with
respect to the limit points induced by perturbation schemes.
We showed that this is not the case for strong and weak Stack-
elberg equilibria. Finally, we showed that deciding the exis-
tence of any Stackelberg equilibrium—refined or not—giving
the leader expected value of at least ν is NP-hard.
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