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Abstract. Abstraction has long been a key component in the practi-
cal solving of large-scale extensive-form games. Despite this, abstraction
remains poorly understood. There have been some recent theoretical re-
sults but they have been confined to specific assumptions on abstraction
structure and are specific to various specific disjoint types of abstrac-
tion, and specific solution concepts, for example, exact Nash equilibria
or strategies with bounded immediate regret. In this paper we present a
unified framework for analyzing abstractions that can express all types of
abstractions and solution concepts used in prior papers with performance
guarantees—while maintaining comparable bounds on abstraction qual-
ity. Moreover, our framework extends well beyond prior work. We present
the first exact decomposition of abstraction error for a broad class of ab-
stractions that encompasses abstractions used in practice. Because it is
significantly more general, this decomposition has a stronger dependence
on the specific strategy computed in the abstraction. We show that this
dependence can be removed by making similar, though slightly weaker,
assumptions than in prior work. We also show, via counterexample, that
such assumptions are necessary for some games. Finally, we prove the
first bounds for how ε-Nash equilibria computed in abstractions perform
in the original game. This is important because often one cannot afford
to compute an exact Nash equilibrium in the abstraction. All our results
apply to general-sum n-player games.

Keywords: Extensive-form game · equilibrium finding· Nash equilib-
rium · abstraction · counterfactual regret minimization.

1 Introduction

Game-theoretic equilibria have played a key role in several recent advances in
the ability to construct AIs with superhuman performance in games with im-
perfect information [5, 10, 32]. In particular these results rely on computing
an approximate Nash equilibrium [33] for the game at hand. In typical real-
world situations these games are so large that even approximate equilibria are
intractable. Instead, the dominant paradigm has been to first construct some
smaller abstraction of the game, apply an iterative algorithm for computing a
Nash equilibrium in the abstraction, and map the resulting strategy back to the
full game. This approach was used in the recent Libratus agent, which beat four
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top poker pros in the game of heads-ups no-limit Texas hold’em [10] (in addition
to abstraction and equilibrium approximation the agent also utilized real-time
subgame solving [9] and action abstraction refinement). Abstraction has also
been used in trading-agent competitions [39] and security games [3, 1, 2].

In practice, abstractions are generated heuristically with no theoretical guar-
antees on solution quality [36, 4, 15, 16, 19, 20, 18, 21, 22, 24, 14, 6, 34]. Ideally,
abstraction would be lossless, such that implementing an equilibrium from the
abstract game results in an equilibrium in the full game. Gilpin and Sandholm
[17] study lossless abstraction techniques for a structured class of games. Un-
fortunately, lossless abstraction often leads to games that are still too large to
solve. Thus, one must turn to lossy abstraction. However, significant abstraction
pathologies (nonmonotonicities) have been shown in games which cannot ex-
ist in single-agent settings: if an abstraction is refined, the equilibrium strategy
from that new abstraction can be worse in the original game than the equilib-
rium strategy from a coarser abstraction [37]! Lossy abstraction remains poorly
understood from a theoretical perspective. Results have been obtained only for
various restricted models of abstraction. Basilico and Gatti [3] give bounds for
the special game class called patrolling security game. Sandholm and Singh [35]
provide lossy abstraction algorithms with bounds for stochastic games. Brown
and Sandholm [7], Waugh et al. [38], Brown and Sandholm [8], and Čermák et al.
[12] develop iterative abstraction-refinement schemes that have various forms of
converge guarantees but they do not give solution-quality guarantees for the
original game for strategies computed in limited-size abstractions.

Results which are for extensive-form games (EFGs) are most related to this
work. Lanctot et al. [30] show that the counterfactual regret minimization algo-
rithm (CFR) converges to an approximate NE when run on an imperfect-recall
abstraction that is a skew well-formed game (SWF) with respect to the original
game, where the error in the NE has a linear dependence on the number of infor-
mation sets. Kroer and Sandholm [27] show that Nash equilibria and strategies
with bounded counterfactual regret computed in chance-relaxed SWF (CRSWF)
(a generalization of SWF that allows error in chance outcomes) are approximate
NE in the original game, with a linear dependence on game-tree height. Kroer
and Sandholm [25] show that NE computed in perfect-recall abstractions that
satisfy conditions that are similar to those in CRSWF abstractions are approx-
imate NE in the original game with a constant dependence on payoff error (as
opposed to a linear dependence on height in Kroer and Sandholm [27] or linear
dependence on information sets in Lanctot et al. [30]). Kroer and Sandholm [26]
extend the results of Kroer and Sandholm [25] to continuous action spaces.

The results in the previous paragraph are all for disparate models of ab-
straction, a specific solution concept, or specific algorithm. Yet they share a
common structure on the assumptions needed in order to obtain theoretical re-
sults. They assume that information sets (i.e., decision points) are aggregated
into larger information sets. All pairs of information sets that are aggregated
together are compared by defining a mapping between subtrees under the in-
formation sets. This mapping then requires that the payoffs are similar, the
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distribution over chance outcomes is similar, and for pairs of leaves mapped to
each other, the leaves have the same sequence of information-set-action pairs
leading to them in the abstraction. Payoff and chance-outcome similarity is sim-
ilar to what good practical abstraction algorithms seek to obtain. However, the
requirement that information-set-action pairs are the same for leaf nodes mapped
to each other is not satisfied by the best heuristic abstraction algorithms used
in practice [24, 14, 6]. In this paper we develop an exact decomposition of the
solution-quality error that does not require any such assumption. This is the first
decomposition of solution-quality error resulting from abstraction. This decom-
position depends on several quantities that prior results did not (owing to its
more general and exact nature). We then show that by making a weaker variant
of previous assumptions, our decomposition can recover all previous solution-
quality bounds. We show via counterexample that there exist games where the
assumption on information-set-action pairs is, in a sense, necessary in order to
avoid large abstraction error that is not measurable by the type of technique
presented here and in prior work.

Finally, we prove the first bounds for how ε-Nash equilibria computed in
abstractions perform in the original game. This is important because often one
cannot afford to compute an exact Nash equilibrium in the abstraction. All our
results apply to general-sum n-player games.

2 Extensive-form games (EFGs)

An extensive-form game (EFG) is a game tree, where each node in the tree
corresponds to some history of actions taken by the players. Each node belongs
to some player, and the actions available to the player at a given node are rep-
resented by the branches. Uncertainty is modeled by having a special player,
Chance, that moves with some predefined fixed probability distribution over
actions. EFGs model imperfect information by having groups of nodes in infor-
mation sets, where an information set is a group of nodes all belonging to the
same player such that the player cannot distinguish among them. In the original
game that we are trying to solve, we assume perfect recall, which requires that no
player forgets information they knew earlier in the game. This is a natural condi-
tion since you generally cannot force players to forget information, and it would
not be in their interest to do so. Formally, an extensive-form game Γ is a tuple
(H,Z,A, P, π0, {Ii}, {ui}). H is the set of nodes in the game tree, corresponding
to sequences (or histories) of actions. Hi is the subset of histories belonging to
Player i. Z ⊆ H is the set of terminal histories, or leaves. A is the set of actions
in the game. AI denotes the set of actions available at nodes in information set I.
P , the player function, maps each non-terminal history h ∈ H \Z to {0, . . . , n},
representing the player whose turn it is to move after history h. If P (h) = 0, the
player is Chance. π0 is a function that assigns to each h ∈ H0 the probability
of reaching h due to Chance (i.e., assuming that both players play to reach h).
An information set Ii, for i ∈ {1, . . . , n}, is a partition of {h ∈ H : P (h) = i}.
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The utility function ui maps z ∈ Z to the utility obtained by player i when the
terminal history is reached.

A behavioral strategy σi for a player i is a probability distribution over actions
at each information set in Ii. A strategy profile σ is a behavioral strategy for
each player. The probability that σ puts on a ∈ AI is denoted σ(I, a). We let
πσ(z) and πσ(I) denote the probability of reaching z and I respectively, if players
choose actions according to σ. We likewise let πσ(z|I) and πσ(Î|I) denote the
reach probabilities conditioned on being at information set I. For a given strategy
profile σ we let σI→a denote the same strategy except that σI→a(I, a) = 1.

We will often quantify statements over the set of leaves or information sets
that are reachable from some given information set I belonging to Player i,
sometimes conditioned on taking a specific action a ∈ AI . We let ZI ,DI ⊂ Ii
be the set of leaves and information sets reachable conditioned on being at
information set I. We let ZI and CI ⊂ Ii be the set of leaves and information sets
that are reachable without Player i taking any further actions before reaching
them. We let ZaI ,DaI , ZaI and CaI be defined analogously but conditioned on taking
action a ∈ AI .

As is usual we use the subscript −i to denote exclusion of Player i, for
example, σ−i is the set of behavioral strategies in σ except for the strategy of
Player i, and πσ−i(z) is the probability of reaching leaf node z disregarding actions
taken by Player i, that is, assuming that Player i plays to reach z.

3 Game abstractions

We consider abstractions that are themselves EFGs, but we do not require ab-
stractions to have perfect recall (the leading practical abstractions are of imper-
fect recall [24, 14, 6]). We will use the original game to refer to some perfect-
recall game Γ = (H,Z,A, P, π0, {Ii}, {ui}) that we would like to compute a
Nash equilibrium for. We use the abstract game to refer to some other game
Γ ′ = (H ′, Z ′, A′, P ′, π′0, {I ′i}, {u′i}) that is an abstraction of Γ . The goal is to
compute a (possibly approximate) equilibrium in the abstraction, and map the
resulting strategy profile to the full game. An example is shown in Figure 1.
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Fig. 1: Abstraction example. Left: Original EFG. Right: Abstraction (which has perfect
recall in this case). Dotted red arrows denote the mapping of information sets in the
original game onto information set partitions in the abstract game. The dotted orange
line in the abstract game denotes an information set coarsening relative to P ′.
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We model abstraction as a two-stage process. First, the full game is mapped
onto the abstract game, with every original information set I ∈ Ii mapping onto
some information-set partition I ′I in the abstraction via a function f : I → P ′
that maps I surjectively onto P ′. P ′ is assumed to be a partitioning of H ′ \ Z ′
that refines I ′. Thus the information-set structure specified by P ′ can be thought
of as specifying an intermediate game with (weakly) more information than Γ ′;
P ′ is assumed to induce a perfect-recall game1. In Figure 1, each of the three
original information sets belonging to Player 2 map onto the same abstract
information set, but the leftmost original information set maps onto the left
partition, whereas the center and right information sets map onto the right
partition. In the abstract game in Figure 1, Player 2 has two subsets in P ′: the
left and right sides of their single information set. Actions are similarly mapped
with an action mapping g : A→ A′ that maps each AI surjectively onto Af(I).
It is assumed that f respects the information-set tree structure by mapping CaI
surjectively onto Cg(a)I′I

. The final part of the first step is a way to map leaf nodes

under original information sets to leaf nodes under the corresponding abstract
information set. For each information set I and action a ∈ AI , we require a
surjective leaf-node mapping φI from the set of leaf nodes reached below I, a
before player i acts again, ZaI , onto Za

′

I′I
.

The second step in our abstraction model captures the differences between
the abstract game Γ ′ and the game induced by using the partitioning P ′ instead.
This is done by comparing the distribution over leaf nodes conditioned on being
at a given I ′I ∈ P ′ versus the distribution conditioned on being at the correspond-
ing abstract information set I ′. In Figure 1 this would correspond to comparing
the leaf nodes under e.g. the right pair of nodes in Player 2’s information set in
the abstraction to the leaf nodes in the overall information set for Player 2. For
each partition I ′I this is done with a set-valued map φI′I that maps the set of leaf

nodes Za′I′I onto Za′I′ for each a′ in a way such that {φI′I (z′) : z′ ∈ Za′I′I } specifies

a partitioning of Za′I′ . For a given partition I ′I , we let DI′I and CI′I be the set of

descendant and child partitions, respectively, that can be reached from I ′I .

For a strategy profile σ′ computed in Γ ′ we need a way to interpret it as
strategy profiles in Γ . We present the natural extension of a lifted strategy,
originally developed by Sandholm and Singh [35] for stochastic games, to EFGs.
Intuitively, a lifted strategy σ↑σ

′
is a strategy where for any abstract action a′,

the sum of probabilities in σ↑σ
′

assigned to actions that map to a′ is equal to
the probability placed on a′ in σ′.

Definition 1 (Strategy lifting). Given an abstract strategy profile σ′, a lifted
strategy profile is any strategy profile σ↑σ

′
such that for all I, all a′ ∈ Af(I):∑

a∈g−1(a′) σ
↑σ′(I, a) = σ′(f(I), a′).

1 Lanctot et al. [30] and Kroer and Sandholm [27] use the notion of a perfect-recall re-
finement, which is a partitioning of each imperfect-recall information set into several
perfect-recall information sets. Our definition of P ′ can be thought of as specifying
a perfect-recall refinement of the abstraction.
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We use the definition of counterfactual value of an information set, intro-
duced by Zinkevich et al. [40], to reason about the value of an information set
under a given strategy profile. The counterfactual value of an information set
I is the expected utility of the information set, assuming that all players fol-
low strategy profile σ, except that Player i plays to reach I. It is defined as
V σi (I) =

∑
z∈ZI

πσ(z|I)ui(z) when πσ−i(I) > 0; otherwise it is 0. Analogously,

Wσ′

i : I ′i → R is the corresponding function for the abstract game. For the infor-
mation set Ir that contains just the root node r, we have V σi (Ir) = V σi (r), which
is the value of playing the game with strategy profile σ. We assume that at the
root node it is not Chance’s turn to move. This is without loss of generality since
we can insert dummy player nodes above a root node belonging to Chance.

We show that for an information set I, V σi (I) can be written as a sum
over descendant information sets. The proof is straightforward but shown in the
appendix.

Lemma 1. For any strategy profile σ or abstract strategy profile σ′, the coun-
terfactual value of an information set I, or abstract information-set partition I ′I ,
can respectively be written as

V σi (I) =
∑
a∈AI

σ(I, a)

[ ∑
Î∈CaI

πσ−i(Î|I)V σi (Î) +
∑
z∈ZaI

πσ−i(z|I)ui(z)

]
,

Wσ′

i (I ′I) =
∑

a′∈AI′

σ′(I ′, a′)

[ ∑
Î′
Î
∈Ca′

I′
I

πσ
′

−i(Î
′
Î
|I ′I)Wσ′

i (Î ′Î) +
∑

z′∈Za′
I′
I

πσ
′

−i(z
′|I ′I)ui(z′)

]
.

(1)

We will show results for three different solution concepts that come up
in practice. An ε-Nash equilibrium is a strategy profile σ such that V σi (r) ≥
V σ
′

i (r) − ε for all players i and σ′ = (σ−i, σ
′
i). In other words, each player can

gain at most ε by deviating to any other strategy σ′i. This is what is computed
by approaches based on first-order methods [23, 29, 28]. A Nash equilibrium is
an ε-Nash equilibrium where ε = 0. Finally, a strategy profile σ has bounded
counterfactual regret if for all i, I ∈ I, and a ∈ AI , V σI→ai (I) ≤ V σi (I) + r(I).
Strategy profiles with bounded counterfactual regret are important because re-
gret minimization algorithms for EFGs converge by producing strategies with
low r(I) [40, 31, 11, 13, 10].

4 Measuring differences between the original game and
the abstract game

Our goal is to show a decomposition of the utility difference between the original
game and the abstract game when using a lifted strategy. In order to do this, we
need a way to measure differences between the original and abstract game. We
measure payoff differences between nodes as

∆R
i (z, z′) = ui(z)− ui(z′).
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We measure leaf-node reach-probability differences conditioned on reaching
a given information set I versus its corresponding abstract information set-
partition I ′I as follows

∆P
−i(z

′|I, a, σ, σ′) =
∑

z∈φ−1
I (z′):z∈ZaI

πσ−i(z|I)− πσ′−i(z′|I ′I), for z′ ∈ Za
′,V
I′ .

We will also need to measure the difference in probability of reaching in-
formation set partitions, conditioned on being at the preceding information set
partition belonging to the same player,

∆P
−i(Î

′
Î
|I, a, σ, σ′) =

∑
Ĩ∈f−1(Î′

Î
)

πσ−i(Ĩ|I, a)− πσ′−i(Î ′Î |I
′
I).

Note that while the set f−1(Î ′
Î
) can include information sets Ĩ that do not come

after I, a, such information sets are irrelevant since πσ−i(Ĩ|I, a) = 0.

We now prove a technical lemma that will be used as the primary tool for
inductively proving that strategies from abstractions have bounded regret.

Lemma 2. For any information set I, I ′ = f(I) and pair of strategy profiles
σ, σ′, assume there is a bound diff(Î , f(Î)) such that V σi (Î)−Wσ′

i (Î ′
Î
) ≤ diff(Î , f(Î))

for all Î ∈ CaI , a ∈ AI , and σ′(I ′, a′) =
∑
a∈g−1(a′) σ(I, a). Then

V σi (I)−Wσ′

i (I ′I) ≤
∑
a∈AI

σ(I, a)

[ ∑
z∈Za,VI

πσ−i(z|I)∆R
i (z, φI(z))

+
∑

z′∈Zg(a),V
I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′) +
∑
Î∈CaI

πσ−i(Î|I) diff(Î , f(Î))

+
∑

Î′
Î
∈Cg(a)

I′
I

∆P
−i(Î

′
Î
|I, a, σ, σ′)Wσ′

i (Î ′
Î
)

]

The above holds with equality if V σi (Î)−Wσ′

i (Î ′
Î
) = diff(Î , f(Î ′)) for all Î ∈ CaI

and a ∈ AI .

We now introduce a shorthand for denoting the utility difference attributable
to differences between a given information set I and its abstract counterpart
f(I). This is the utility difference that would arise from recursively applying
Lemma 2 to information sets.

Mdiff(I, σ, σ′−i)
def
=
∑
a∈AI

σ(I, a)

[ ∑
z∈Za,VI

πσ−i(z|I)∆R
i (z, φI(z))

+
∑

z′∈Zg(a),V
I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′)

+
∑
Î∈CaI

πσ−i(Î|I) Mdiff(Î , σ, σ′−i) +
∑

Î′
Î
∈Cg(a)

I′
I

∆P
−i(Î

′
Î
|I, a, σ, σ′)Wσ′

i (Î ′
Î
)

]
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It follows from Lemma 2 that the players’ values in any lifted strategy profile
in the original game are close to the players’ values of the corresponding abstract
strategy profile:

Lemma 3. Given any abstract strategy profile σ′, any lifted strategy profile σ↑σ
′

achieves utility

Wσ′

i (r′) = V σ
↑σ′

i (r)−Mdiff(r, σ↑σ
′
, σ′−i)

Next we derive an expression for the difference between an abstract infor-
mation set and any subset in its partitioning. We will need a way to measure
the difference between an information set I ′ and any partition I ′I . For reach
probability, we let

∆P (z′|I ′I , σ′) = πσ
′
(z′|I ′I)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′) (2)

be the difference between the probability of arriving at z′ conditioned on a
strategy σ′ and being in partition I ′I of I ′ and the probability of arriving at any
leaf node z′ ∈ φ−1I′I (z′) conditioned on the same strategy σ′ and being in I ′. For

reward differences we let the utility difference between a leaf node ẑ′ ∈ ZI′ and
its corresponding leaf node z′ = φ−1I′I

(z′) in ZI′I be

∆R
i (ẑ′|I ′I) = ui(z

′)− δI′Iui(ẑ
′) (3)

These terms allow us to measure the difference between the valueWσ′

i (I ′) and

Wσ′

i (I ′I) for any information set I ′ and any I ′I in its partition. We let Pdiff(I ′I , σ
′)

denote this difference.

Lemma 4. For any player i, abstract strategy profile σ′, information set I ′ and
any I ′I in its partition,

Wσ′

i (I ′I)− δI′IW
σ′

i (I ′) =
∑
ẑ′∈Z

I′

πσ
′
(ẑ′|I ′)∆R

i (ẑ′|I ′I)

+
∑

z′∈Z
I′
I

∆P (z′|I ′I , σ′)ui(z′)
def
= Pdiff(I ′I , σ

′)

5 An exact decomposition of abstraction error

Our first theorem shows that an ε-Nash equilibrium in the abstract game maps
to an ε′-Nash equilibrium in the original game, where ε′ depends on the difference
terms introduced in the previous section. We say that the abstract game has a
cycle if there exists a sequence of information sets I ′1, . . . , I

′
k such that for all

j 6= k there exist nodes h′j ∈ I ′j , h′j+1 ∈ I ′j+1 such that h′j is an ancestor of h′j+1,
and I ′1 is equal to I ′k. The next theorem assumes the abstract game is acyclic.
This enables induction over information sets.

Theorem 1. Given an ε-Nash equilibrium σ′ for an acyclic abstract game, any
lifted strategy profile σ↑σ

′
is an ε′-Nash equilibrium in the original game where
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ε′ = maxi∈N εi and

ε′i =ε+ Mdiff(r, σ∗, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i)

+
∑
I∈Ii

πσ
∗
(I) [Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′)]

here σ∗ = (σ∗i , σ
↑σ′
−i ) is σ↑σ

′
except Player i plays any best response strategy for

the original game, σ∗′ = (σ∗′i , σ
′
−i) is such that σ∗′(I ′, a′) =

∑
g−1(a′) σ

∗(I, a)

where I ∈ f−1(I ′) is chosen for each I ′ in order to maximize Wσ∗′

i (r), and
σ∗′I′→I is σ∗′ except that at I ′ we set the strategy according to I, i.e. σ∗′(I ′, a′) =∑
g−1(a′) σ

∗(I, a).

This theorem is the first to show results for mapping an ε′-Nash equilibrium
in the abstract game to an ε-Nash equilibrium in the original game. Prior results
have been for abstract strategies that are either exact Nash equilibria [25] or
with bounded counterfactual regret [30, 27]. That is because all prior proofs
were based on applying a worst-case counterfactual regret bound as part of
the inductive step (which works for exact Nash equilibrium or strategies with
bounded counterfactual regret but not ε-Nash equilibrium); our proof instead
constructs an expression for Wσ∗′

i (r′) (i.e., for the value of the whole abstract
game) before using the fact that σ′ is an ε-Nash equilibrium. We next show
that our framework can also measure differences for strategies with bounded
counterfactual regret.

Theorem 2. For an abstract strategy profile σ′ with bounded counterfactual re-
gret r(I ′) at every information set I ′ ∈ I ′, any lifted strategy profile σ↑σ

′
is an

ε-Nash equilibrium where

ε = max
i∈N

εi, εi ≤
∑
I∈Ii

πσ
∗
(I)
[
δf(I)I r(f(I)) + Pdiff(I ′I , σ

′
I→σ∗′)− Pdiff(I ′I , σ

′)
]

+ Mdiff(r, σ∗, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i)

where σ∗ = (σ∗i , σ
↑σ′
−i) is σ↑σ

′
except for Player i best responding, and each

σ′I→σ∗ is equal to σ′ except that σ′I→σ∗(f(I), a′) =
∑
a∈g−1(a′) σ

∗(I, a) for all

a′ ∈ Af(I).

We will show in the next sections that our two main theorems generalize
prior results. In addition, our theorems are the first to give an exact expression
for the abstraction error; the inequalities arise only from inexactly solving the
abstract game.

6 Generalizing prior results

We now show that if the reach of leaf nodes and child information sets in the
original and abstract game are the same (without considering Chance moves),
the exact results from the previous section subsume all prior solution quality
bounds for EFGs [30, 25, 27] (which also make that assumption or stronger
assumptions). In order to state our result, we let χi be the set of pure strategies
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belonging to Player i. We will often use a as an index where a single action a
would go according to our definitions; in such cases a should be interpreted as
the specific action in a that pertains to the definition, usually the action at a
given information set I prescribed by a. In a slight abuse of notation, we let
g(a) denote the pure strategy in the abstract game corresponding to a when
applying g.

Proposition 1. If an abstract strategy profile σ′ and a lifted strategy profile σ↑σ
′

are such that for all i, I ∈ I, ∆P
−i,−0(z′|I, a, σ, σ′) = 0, ∆P

−i,−0(z|I, σ, σ′) = 0,

and ∆P
−i,−0(Î ′

Î
|I, a, σ, σ′) = 0 then for all players i and σ = (σi, σ

↑σ′
−i ) we have

Mdiff(r, σ, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i) ≤ 2 max

a∈χi

∑
I∈Ii

πσ
↑σ′

(I|a)

[ ∑
z∈Za,V

I

πσ
↑σ′

−i (z|I)∆R(z, φI(z))

+
∑

z′∈Zg(a),V

I′
I

∆0(z′[I]|I)πσ
′

−i(z
′|z′[I]) +

∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′

−i(z
′|th

′
0

a′ )ui(z
′)


∑
Î∈CaI

∑
ĥ′∈Î′

Î

∆0(ĥ′[I ′I ]|I)πσ
′

−i(ĥ
′|ĥ′[I ′I ]) +

∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′

−i(ĥ
′|th

′
0

a′ )

Wσ′

i (Î ′
Î
)

]
def
= Mdiffi(σ

↑σ′ , σ′)

We can combine Proposition 1 with Theorem 1 to get a bound that is inde-
pendent of the best-response strategy:

Corollary 1. If σ′ is an abstract ε′-Nash equilibrium, satisfies the condition of
Proposition 1, and Pdiff is zero everywhere, then any lifted strategy profile σ↑σ

′

is an ε-Nash equilibrium where ε is less than maxi∈N Mdiffi(σ
↑σ′ , σ′) + ε′

The game class discussed by Kroer and Sandholm [25] is easily shown to
satisfy the assumptions in Proposition 1. Thus this shows a more general bound
similar to that of Kroer and Sandholm [25], where we leave in several expecta-
tions rather than taking maxima everywhere (the result by Kroer and Sandholm
[25] required taking several maxima where we leave in the expectation because
their proof is based on upper-bounding as part of the inductive step). Therefore,
Corollary 1 yields tighter results despite also being more general.

Corollary 1 shows a result for ε-Nash equilibrium computed in the abstrac-
tion. An analogous corollary for abstract strategies with bounded immediate
regret can easily be obtained by combining Proposition 1 with Theorem 2.

We now show that, similar to mapping error, if the reach of leaf nodes in the
original and abstract game are the same without considering Chance moves, we
can bound partitioning error with an expression that does not depend on the
best response σ∗i of Player i.
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Proposition 2. If σ′ is such that πσ
′

−0(z′|I ′I , a′) = πσ
′

−0(ẑ′|I ′, a′) for all I ′I , a
′, z′, ẑ′ ∈

φI′I (z
′), then

Pdiff(I ′I , σ
′
I→σ∗)− Pdiff(I ′I , σ

′) ≤ 2 max
a′∈AI′

[ ∑
z′∈Za′

I′

πσ
′
(z′|I ′, a′)∆R

i (z′|I ′I)

+ πσ
′

−0(z′|I ′I , a′)
∑

ẑ′∈φI′
I
(z′)

[
πσ
′

0 (ẑ′|I ′, a′))− πσ′0 (z′|I ′I , a′
] ]

def
= Pdiff(I ′I , σ

′
I→σ∗ , σ

′),
∀σ′I→σ∗

This can be combined with our main theorems in order to get results for
ε-Nash equilibrium or strategies with bounded regret where the partition error
does not depend on the best response.

Corollary 2. If σ′ has bounded counterfactual regret r(I ′) at every information
set I ′ ∈ I ′, satisfies the condition of Proposition 2, and Mdiff is zero everywhere,
then any lifted strategy σ↑σ

′
is an ε-Nash equilibrium where ε = maxi∈N εi and

εi ≤
∑
I∈Ii π

σ∗(I)
[
δf(I)I r(f(I)) + Pdiff(I ′I , σ

′
I→σ∗ , σ

′)
]

Kroer and Sandholm [27] took maxima in several places where we left in the
expectation: they take a maximum over the decisions of Player i in πσ

∗
(I), and

they maximize over the partitions in I ′. Taking these maxima avoids dependence
on σ∗. Taking these maxima could easily be done in Corollary 2 as well. Kroer
and Sandholm [27] also separate ∆P

0 (z′|I ′I) into separate terms for Chance er-
ror that occurs before and after reaching I ′; this potentially leads to a looser
bound than ours (and never tighter since we could combine our Corollary 2 with
their separation). An analogue to Corollary 2 but for ε-Nash equilibrium can be
obtained by combining Theorem 1 with Proposition 2.

6.1 Neccessity of distributional similarity of reach probabilities

We now show that the style of bound given by Lanctot et al. [30] as well as our
corrolaries 1 and 2 cannot generalize to games where opponents do not have the
same sequence of information-set-action pairs, or in our case the slightly weaker
requirements in Propositions 1 and 2, for game nodes that map to each other in
the abstraction. The two games that we will use as counterexamples are shown
in Figure 2. From the perspective of our results, the usefulness of assuming the
same sequence of information-set-action pairs is that it implies the condition
used in Propositions 1 and 2; the following counterexamples thus also show
that this assumption is a useful way to disallow bad abstractions such as the
ones presented here (although overly restrictive from a practical perspective).
Contrary to the prior results, our Theorems 1 and 2 still apply to the games
below. Our two theorems would give weak bounds commensurate with the large
error in the abstract equilibrium; this error is contained in the terms that depend
on ∆P .

On the left in Figure 2 is a general-sum game where the two nodes belonging
to Player 1 are abstracted into a single information set. If we map ` onto ` and
r onto r we get an abstraction with low payoff error: ε at every node. Let ε > 0.
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1

2

v, ε 0, 0

`

2

v, 0 0, ε

r

1
2

1

2

v, 0 0, ε

`

2

v, ε 0, 0

r

1
2

1

−ε
2

−1
`

1

r

1
4

1

ε
2

1
`

−1

r

1
4 1

ε
2

−1
`

1

r

1
4 1

−ε
2

1
`

−1

r

1
4

Fig. 2: Left: General-sum EFG with abstraction. Right: zero-sum EFG with abstraction
where Player 1 wants to minimize. Orange dashed lines denote information sets joined
in the abstraction. Bold edges denote actions taken with probability 1 in the abstracted
equilibrium.

Player 2 plays the bolded edges at nodes with non-zero probability of being
reached. In the abstraction, Player 1 gets v

2 for every strategy. In the full game,
Player 1 can choose ` in the left subtree and r in the right subtree for a payoff of
v. Thus in every equilibrium where Player 2 plays according to the bolded edges
(which includes all equilibrium refinements) Player 1 loses v

2 from abstracting,
despite the payoff error being arbitrarily small. If we set ε = 0, equilibria where
Player 2 plays the bolded edges still have high loss—despite zero payoff error.

On the right in Figure 2 is a zero-sum game where the two bottom information
sets belonging to Player 2 have been abstracted. Consider the following abstract
equilibrium: Player 1 plays the bolded edges with probability 1, and Player 2
plays `, r with equal probability. Player 1 gets expected utility − ε

2 , but in the
full game Player 1 can choose ` (r) in the left (right) information set to get
utility 1−ε

2 . Thus Player 1 has a utility loss of 1
2 despite a payoff error of 0.
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[12] Čermák, J., Bošansky, B., Lisý, V.: An algorithm for constructing and solving
imperfect recall abstractions of large extensive-form games. In: Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI). pp. 936–942
(2017)

[13] Farina, G., Kroer, C., Sandholm, T.: Regret minimization in behaviorally-
constrained zero-sum games. In: International Conference on Machine Learning
(ICML) (2017)

[14] Ganzfried, S., Sandholm, T.: Potential-aware imperfect-recall abstraction with
earth mover’s distance in imperfect-information games. In: AAAI Conference on
Artificial Intelligence (AAAI) (2014)

[15] Gilpin, A., Sandholm, T.: A competitive Texas Hold’em poker player via auto-
mated abstraction and real-time equilibrium computation. In: Proceedings of the
National Conference on Artificial Intelligence (AAAI). pp. 1007–1013 (2006)

[16] Gilpin, A., Sandholm, T.: Better automated abstraction techniques for imper-
fect information games, with application to Texas Hold’em poker. In: Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
pp. 1168–1175 (2007)

[17] Gilpin, A., Sandholm, T.: Lossless abstraction of imperfect information games.
Journal of the ACM 54(5) (2007)

[18] Gilpin, A., Sandholm, T.: Expectation-based versus potential-aware automated
abstraction in imperfect information games: An experimental comparison using
poker. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
(2008), short paper

[19] Gilpin, A., Sandholm, T., Sørensen, T.B.: Potential-aware automated abstraction
of sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2007)

[20] Gilpin, A., Sandholm, T., Sørensen, T.B.: A heads-up no-limit Texas Hold’em
poker player: Discretized betting models and automatically generated equilibrium-
finding programs. In: International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS) (2008)

[21] Hawkin, J., Holte, R., Szafron, D.: Automated action abstraction of imperfect
information extensive-form games. In: AAAI Conference on Artificial Intelligence
(AAAI) (2011)

[22] Hawkin, J., Holte, R., Szafron, D.: Using sliding windows to generate action ab-
stractions in extensive-form games. In: AAAI Conference on Artificial Intelligence
(AAAI) (2012)



14 C. Kroer et al.

[23] Hoda, S., Gilpin, A., Peña, J., Sandholm, T.: Smoothing techniques for computing
Nash equilibria of sequential games. Mathematics of Operations Research 35(2)
(2010)

[24] Johanson, M., Burch, N., Valenzano, R., Bowling, M.: Evaluating state-space ab-
stractions in extensive-form games. In: International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) (2013)

[25] Kroer, C., Sandholm, T.: Extensive-form game abstraction with bounds. In: Pro-
ceedings of the ACM Conference on Economics and Computation (EC) (2014)

[26] Kroer, C., Sandholm, T.: Discretization of continuous action spaces in extensive-
form games. In: International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS) (2015)

[27] Kroer, C., Sandholm, T.: Imperfect-recall abstractions with bounds in games. In:
Proceedings of the ACM Conference on Economics and Computation (EC) (2016)
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A Proof of Lemma 1

Proof. We show the statement for V σi (I), the result for Wσ′
i (I ′I) follows by viewing the

partitioning as a perfect-recall game. We have

V σi (I) =
∑
z∈Z

I

πσ(z|I)ui(z) =
∑
Î∈C

I

∑
z∈Z

Î

πσ(z|I)ui(z) +
∑
z∈Z

I

πσ(z|I)ui(z) (4)

Now note that for any Î ∈ CI we have∑
z∈Z

Î

πσ(z|I)ui(z) =
∑
h∈Î

πσ(h|I)
∑
z∈Z

Î

πσ(z|h)ui(z) = πσ(Î|I)
∑
h∈Î

πσ(h|Î)
∑
z∈Z

Î

πσ(z|h)ui(z)

=πσ(Î|I)
∑
z∈Z

Î

πσ(z|Î)ui(z) = πσ(Î|I)V σi (̂i),

where the second equality follows from πσ(h|I) = πσ(h|Î)πσ(Î|I) and the third equality
follows from πσ(z|Î) = πσ(h|Î)πσ(z|h). Plugging this into (4) gives the result.

B Proposition 3

Proposition 3. For any player i, abstract strategy σ′, real strategy σ, information sets
I and I ′ = f(I), and actions a and a′ = g(a)∑
z∈ZaI

πσ−i(z|I)ui(z)−
∑

z′∈Za
′
I′
I

πσ
′
−i(z

′|I ′I)ui(z′) =
∑

z∈Za,V
I

πσ−i(z|I)∆R(z, φI(z)) +
∑

z′∈Za
′,V
I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′)

Proof. We have∑
z∈Za,V

I

πσ−i(z|I)ui(z) =
∑

z′∈Za
′,V
I′
I

∑
z∈φ−1

I
(z′):z∈Za

I

πσ−i(z|I)ui(z)

=
∑

z′∈Za
′,V
I′
I

∑
z∈φ−1

I
(z′):z∈Za

I

πσ−i(z|I)(ui(z
′) +∆R(z, φI(z)))

=
∑

z′∈Za
′,V
I′
I

[
πσ
′
−i(z

′|I ′I) +∆P
−i(z

′|I, a, σ, σ′)
]
ui(z

′) +
∑

z∈Za,V
I

πσ−i(z|I)∆R(z, φI(z))

=
∑

z′∈Za
′,V
I′
I

πσ
′
−i(z

′|I ′I)ui(z′) +
∑

z∈Za,V
I

πσ−i(z|I)∆R(z, φI(z)) +
∑

z′∈Za
′,V
I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′).

The first equality follows from the fact that every leaf node in Za,VI maps onto some

leaf node in Za
′,V
I′ , the second from the definition of ∆R, the third by rearranging terms

and the definition of ∆P , and the fourth by rearranging terms.

C Proof of Lemma 2

Proof. By Lemma 1 we have

V σi (I) =
∑
a∈AI

σ(I, a)

∑
Î∈Ca

I

πσ−i(Î|I)V σi (Î) +
∑
z∈Za

I

πσ−i(z|I)ui(z)


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We show the result by separately rewriting the two summation terms. For the summa-
tion over information sets we have∑

Î∈Ca
I

πσ−i(Î|I)V σi (Î) ≤
∑
Î∈Ca

I

πσ−i(Î|I)
[
Wσ′
i (Î ′Î) + diff(Î , f(Î))

]
=
∑
Î′∈Ca′

I′

[
πσ
′
−i(Î

′
I |I ′, a′) +∆P

−i(Î
′
I |I, a, σ, σ′)

]
Wσ′
i (Î ′Î) +

∑
Î∈Ca

I

πσ−i(Î|I) diff(Î , f(Î))

Where the last step follows by the definition of ∆P
−i(Î

′
I |I, a, σ, σ′). For the summa-

tion over
∑
z∈Za

I
we can apply Proposition 3. Adding up terms and using the condition

σ′(I ′, a′) =
∑
a∈g−1(a′) σ(I, a) then gives the result.

To see why the inequality holds with equality when the bounds on child information
sets are equalities, note that the only inequality introduced in the proof comes from
applying the bound on the child information sets.

D Proof of Lemma 4

Proof. Using the definition of the value of a partition and applying (2), rearranging,

applying (3), rearranging again and using the definition of Wσ′
i (I ′) gives

Wσ′
i (I ′I) =

∑
z′∈Z

I′
I

πσ
′
(z′|I ′I)ui(z′) =

∑
z′∈Z

I′
I

[ ∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′) +∆P (z′|I ′I , σ′)

]
ui(z

′)

=
∑

z′∈Z
I′
I

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′)ui(z′) +

∑
z′∈Z

I′
I

∆P (z′|I ′I , σ′)ui(z′))

=
∑

z′∈Z
I′
I

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′)

[
δI′
I
ui(ẑ

′) +∆R(ẑ′|I ′I)
]

+
∑

z′∈Z
I′
I

∆P (z′|I ′I , σ′)ui(z′))

=δI′
I
Wσ′
i (I ′) +

∑
ẑ′∈Z

I′

πσ
′
(ẑ′|I ′)∆R(ẑ′|I ′I) +

∑
z′∈Z

I′
I

∆P (z′|I ′I , σ′)ui(z′))

where the last step follows because φI′
I
(·) specifies a partitioning of the leaves under

I ′.

E Proof of Theorem 1

Proof. The proof consists of showing that V σ
∗

i (r) can be bounded by Wσ∗′
i (r′) and

some difference terms, where σ∗′ is a (intuitively speaking) reversely lifted strategy

from σ∗. We can then use the fact that σ′ is an ε-Nash equilibrium to bound Wσ∗′
i (r′)

in terms of Wσ′
i (r′) and finally show that Wσ′

i (r′) is close to V σ
↑σ′

i (r).

To rewrite V σ
∗

i (r) in terms of Wσ∗′
i (r′) we first prove the following inductive state-

ment for I ∈ Ii, I ′ = f(I) and letting Î ′ = f(Î) for each Î:

V σ
∗

i (I) ≤Wσ∗′
i (I ′I) + Mdiff(I, σ∗, σ′−i) +

∑
Î∈DI∪{I}

πσ
∗
(Î|I)

[
Pdiff(Î ′Î , σ

∗′
Î′→Î)− Pdiff(Î ′Î , σ

∗′)
]

We will start by showing the inductive step, as the base case is the special case of
information sets that only have leaves beneath them (i.e. information sets I such that
for all a, CaI = ∅).
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Let I, I ′ = f(I) be such that the inductive statement holds for all a ∈ AI and
Î ∈ CaI . The inductive assumption then gives a bound for each Î ∈ DI as required by
Lemma 2. We have

V σ
∗

i (I) ≤Wσ∗′
I′→I

i (I ′I) + Mdiff(I, σ∗, σ′−i) +
∑
Î∈D

I

πσ
∗
(Î|I)

[
Pdiff(Î ′Î , σ

∗′
Î′→Î)− Pdiff(Î ′Î , σ

∗′)
]
,

(5)

where the result follows by collecting terms that arise from Lemma 2 into the three
separate terms above.

Now we can bound W
σ∗′
I′→I

i (I ′I)

W
σ∗′
I′→I

i (I ′I) =δI′
I
W

σ∗′
I′→I

i (I ′) + Pdiff(I ′I , σ
∗′
I′→I); by Lemma 4

≤δI′
I
Wσ∗′
i (I ′) + Pdiff(I ′I , σ

∗′
I′→I); because σ∗′ maximizes Wσ∗′

i (r)

=Wσ∗′
i (I ′I) + Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′); by Lemma 4. (6)

Putting (5) and (6) together gives the inductive statement.

For the base case, note that it follows from the exact same logic but where there
are no descendant information sets. Applying the induction to the whole game we get

V σ
∗

i (r) ≤Wσ∗′
i (r′) + Mdiff(r, σ∗, σ′−i) +

∑
I∈Ii

πσ
∗
(I)
[
Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′)
]

(7)

Now we can bound Wσ∗′
i (r′) by using the fact that σ′ is an ε-Nash equilibrium in

the abstract game:

(7) ≤Wσ′
i (I ′) + ε+ Mdiff(r, σ∗, σ′−i) +

∑
I∈Ii

πσ
∗
(I)
[
Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′)
]

(8)

Finally we can apply Lemma 3 to get the theorem statement.

F Proof of Theorem 2

Proof. Consider some best-response profile σ∗ = (σ∗i , σ
↑σ′
−i). We will show that it

satisfies this bound. First we show that the following holds by induction for every
I, I ′ = f(I):

V σ
∗

i (I)−Wσ′
i (I ′I) ≤

∑
Î∈DI∪{I}

πσ
∗
(Î|I)

[
δÎ′
Î

r(f(Î)) + Pdiff(Î ′Î , σ
′
I→σ∗)− Pdiff(Î ′Î , σ

′)
]

+ Mdiff(I, σ∗, σ′−i)

We start by proving the inductive case. The base case follows by being a special
case with no descendant information sets.

We will use the inductive assumption to apply Lemma 2 to the strategy pair
σ∗, σ′I→σ∗ , which satisfies the condition in the Lemma since σ′I→σ∗ plays according
to σ∗ at I ′. Lemma 2 requires a bound for each Î ∈ CaI : we let diff(Î , f(Î)) be equal to
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the right-hand side terms in the inductive assumption. Lemma 2 then gives

V σ
∗

i (I) ≤Wσ′I→σ∗
i (I ′I) +

∑
a∈AI

σ∗(I, a)

 ∑
z∈Za,V

I

πσ
↑σ′

−i (z|I)∆R(z, φI(z)) (9)

+
∑

z′∈Za
′,V
I′
I

∆P
−i(z

′|I, a, σ↑σ
′
, σ′)ui(z

′)

+
∑
Î∈Ca

I

πσ
↑σ′

−i (Î|I) diff(Î , f(Î)) +
∑

Î′
Î
∈Ca′
I′
I

∆P
−i(Î

′
Î |I, a, σ

↑σ′ , σ′)Wσ′
i (Î ′Î)

 (10)

Note that for some quantities that do not depend on player i, we have substituted σ↑σ
′

for σ∗, which is valid because σ↑σ
′
−i = σ∗−i. The same applies to σ′ and σ′I→σ∗ for

quantities that do not depend on I ′. We now show how to convert W
σ′I→σ∗
i (I ′I) into

Wσ′
i (I ′I). First we apply Lemma 4 followed by the bound on immediate regret to get

W
σ′I→σ∗
i (I ′I) = δI′

I
W

σ′I→σ∗
i (I ′) + Pdiff(I ′I , σ

′
I→σ∗) ≤ δI′

I

[
Wσ′
i (I ′) + r(I ′)

]
+ Pdiff(I ′I , σ

′
I→σ∗)

(11)

Now we can apply Lemma 4 again to get

(11) = Wσ′
i (I ′I) + δI′

I
r(I ′) + Pdiff(I ′I , σ

′
I→σ∗)− Pdiff(I ′I , σ

′)

This proves the inductive step: expanding the diff(Îf(Î)) and diff(Îf(Î)) terms in (10),
using the above equality, and collecting terms gives the inductive assumption.

Applying the inductive statement to the whole game almost gives the theorem

statement, we only need to convert Wσ′
i (r) into V σ

↑σ′

i (r) and acquire a negative term

Mdiff(r, σ↑σ
′
, σ′−i). This is exactly what we get if we apply Lemma 3 to Wσ′

i (r), and
so the proof is done.
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G Proof of Proposition 1

Proof. If we unroll the recursive definition of Mdiff and use the fact that σ−i = σ↑σ
′

−i
we get

Mdiff(r, σ, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i)

=
∑
I∈Ii

∑
a∈AI

[
πσi (I)σ(I, a)− πσ

↑σ′

i (I)σ↑σ
′
(I, a)

]
πσ
↑σ′

−i (I)

 ∑
z∈Za,V

I

πσ
↑σ′

−i (z|I)∆R(z, φI(z))

+
∑

z′∈Zg(a),V
I′
I

∆P
−i(z

′|I, a, σ↑σ
′
, σ′)ui(z

′) +
∑

Î′
Î
∈Cg(a),β
I′
I

∆P
−i(Î

′
Î |I, a, σ

↑σ′ , σ′)Wσ′
i (Î ′Î)



≤2 max
a∈χi

∑
I∈Ii

πσ
↑σ′

(I|a)

 ∑
z∈Za,V

I

πσ
↑σ′

−i (z|I)∆R(z, φI(z)) +
∑

z′∈Zg(a),V

I′
I

∆P
−i(z

′|I,a, σ↑σ
′
, σ′)ui(z

′)

+
∑

Î′
Î
∈Cg(a)

I′
I

∆P
−i(Î

′
Î |I,a, σ

↑σ′ , σ′)Wσ′
i (Î ′Î)

 (12)

Now it remains to note that by Lemmas ?? and ?? we have

2 max
a∈χi

∑
I∈Ii

πσ
↑σ′

(I|a)

 ∑
z∈Za,V

I

πσ
↑σ′

−i (z|I)∆R(z, φI(z))

+
∑

z′∈Zg(a),V

I′
I

∆0(z′[I]|I)πσ
′
−i(z

′|z′[I]) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(z

′|th
′
0
a′ )ui(z

′)


∑
Î∈Ca

I

∑
ĥ′∈Î′

Î

∆0(ĥ′[I ′I ]|I)πσ
′
−i(ĥ

′|ĥ′[I ′I ]) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(ĥ

′|th
′
0
a′ )

Wσ′
i (Î ′Î)



H Proof of Proposition 2

Proof. Since πσ
′
I→σ (z′|I ′) = πσ

′
(z′|I ′, a′)σ′I→σ(I ′, a′) we can write the difference as

Pdiff(I ′I , σ
′
I→σ∗)− Pdiff(I ′I , σ

′) =
∑

a′∈AI′

[
σ′I→σ∗(I

′, a′)− σ′(I ′, a′)
] [

∑
z′∈Za′

I′

πσ
′
(z′|I ′, a′)∆R(z′|I ′I) +

∑
z′∈Za′

I′
I

∆P (z′|I ′I , σ′, a′)ui(z′)
]

(13)
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We can bound this by two times the maximum value of the expression in the second
brackets, where the maximum is over all a′ ∈ AI′ to get

(13) ≤2 max
a′∈AI′

 ∑
z′∈Za′

I′

πσ
′
(z′|I ′, a′)∆R(z′|I ′I) +

∑
z′∈Za′

I′
I

∆P (z′|I ′I , σ′, a′)ui(z′)


Now it remains to note that by our condition πσ

′
−0(z′|I ′I , a′) = πσ

′
−0(ẑ′|I ′, a′) we have

∆P (z′|I ′I , σ′, a′) = πσ
′
(z′|I ′I , a′)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′, a′)

=πσ
′
(z′|I ′I , a′)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
−0(z′|I ′I , a′)πσ

′
0 (ẑ′|I ′, a′)

=πσ
′
(z′|I ′I , a′)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
−0(z′|I ′I , a′)

[
πσ
′

0 (z′|I ′I , a′) +
(
πσ
′

0 (ẑ′|I ′, a′))− πσ
′

0 (z′|I ′I , a′
)]

=πσ
′
−0(z′|I ′I , a′)

∑
ẑ′∈φI′

I
(z′)

[
πσ
′

0 (ẑ′|I ′, a′))− πσ
′

0 (z′|I ′I , a′
]

which proves the theorem.

I Proof that the game in Figure ?? is a game of ordered
signals

Proof. We go through the conditions for games of ordered signals as given by Gilpin
and Sandholm [17].

1. The number of players is 2 which is finite.
2. The game gives only a signal tree that can be used to define winners, and thus

works with any betting tree.
3. We only give a signal tree so this is not relevant.
4. The set of signals is {J1,J2,K1,K2}.
5. κ = {1}, γ = {1}.


