Connected components

Linear $O(V + E)$
Component graph is acyclic.

Once DFS visits a component, it discovers all vertices in that component before finishing with v.

Largest finishing time is in a source in the component graph.
DFS in a sink, never leaves that component.
edge in component graph

\[x \rightarrow y \]

\[f(x) > f(y) \]
Proof Assume not. There is some cut for which the min. wt. edge is not in the MST. (Call the current alleged MST T)

(uv) is the min. wt. edge in T crossing the cut (xy) is the min wt edge crossing cut

$w(x,y) < w(u,v)$. Adding (xy) to T creates a cycle which crosses the cut at least twice. Let (a,b) be an edge besides (x,y) that crosses the cut. My tree is $T \cup \{(x,y)\} - (a,b)$

$w(T') = w(T) + w(xy) - w(a,b)$

but $w(xy) < w(a,b)$

$\therefore w(T') < w(T)$ contradicts T being an MST.