Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods $\langle s_i, f_i \rangle$ are:

$\langle 1, 4 \rangle, \langle 3, 5 \rangle, \langle 0, 6 \rangle, \langle 5, 7 \rangle, \langle 3, 8 \rangle, \langle 5, 9 \rangle, \langle 6, 10 \rangle, \langle 8, 11 \rangle, \langle 8, 12 \rangle, \langle 2, 13 \rangle, \langle 12, 14 \rangle$

Which ones should we schedule?
Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods \((s_i, f_i)\) are:

\[(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)\]

Which ones should we schedule?
1 Sort by finishing time, renumber with 1 having earliest finishing time
2 Output 1
3 \(last = f_1\)
4 for \(i = 2\) to \(n\)
5 \hspace{1em} do if \((s_i \leq last)\)
6 \hspace{2em} then Output \(i\)
7 \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} last = f_i