Randomized Selection

Same start as for deterministic selection

\[
\text{SELECT}(A, i, n)
\]

1. if \(n = 1 \)
2. then return \(A[1] \)

3. \(p = \text{MEDIAN}(A) \)
4.
5.

6. \(L = \{ x \in A : x \leq p \} \)
 \(H = \{ x \in A : x > p \} \)

7. if \(i \leq |L| \)
8. then \(\text{SELECT}(L, i, |L|) \)
9. else \(\text{SELECT}(H, i - |L|, |H|) \)

Choose pivot \(p \) randomly.
Randomized Selection

Same start as for deterministic selection

\texttt{SELECT}(A, i, n)

1. \textbf{if} \ (n = 1)
2. \textbf{then return} \ A[1]

3. \(p = A[\text{RANDOM}(1, n)] \)

5

6. \(L = \{x \in A : x \leq p\} \)
7. \(H = \{x \in A : x > p\} \)

8. \textbf{if} \ i \leq |L|
9. \textbf{then} \ \texttt{SELECT}(L, i, |L|)
10. \textbf{else} \ \texttt{SELECT}(H, i - |L|, |H|)
Analysis

\[T(n) = \sum_{x=1}^{n} \Pr(\text{partition is x smallest}) \cdot (\text{Running time when partition is x smallest}) . \]

Using \(x \) and \(n - x \) as an upper bound of the sizes of the two sides:

\[
T(n) \leq \sum_{x=1}^{n} \frac{1}{n} ((T(x) \text{ or } T(n - x)) + O(n)) \\
\leq \sum_{x=1}^{n} \frac{1}{n} (T(\max\{x, n - x\}) + O(n)) \\
\leq \left(\frac{1}{n} \right) \sum_{x=1}^{n} (T(\max\{x, n - x\})) + O(n)
\]

We now rewrite the max term. Notice that as \(x \) goes from 1 to \(n \), the term \(\max\{x, n - x\} \) takes on the values \(n - 1, n - 2, n - 3, \ldots, n/2, n/2, n/2 + 1, n/2 + 2, \ldots, n - 1, n \). As an overestimate, we say that it takes all the values between \(n/2 \) and \(n \) twice. Thus we substitute and obtain

\[
T(n) \leq \left(\frac{2}{n} \sum_{x=0}^{n/2} T(n/2 + x) \right) + O(n) \\
= \frac{2}{n} T(n) + \left(\frac{2}{n} \sum_{x=0}^{n/2-1} T(n/2 + x) \right) + O(n)
\]
Analysis

\[T(n) \leq \left(\frac{2}{n} \sum_{x=0}^{n/2} T(n/2 + x) \right) + O(n) \]

\[= \frac{2}{n} T(n) + \left(\frac{2}{n} \sum_{x=0}^{n/2-1} T(n/2 + x) \right) + O(n) \]

We pulled out the \(T(n) \) terms to emphasize them. We might be worried about having \(T(n) \) on the right side of the equation, so we will bring it over the left-hand side and obtain

\[\left(1 - \frac{2}{n}\right) T(n) \leq \left(\frac{2}{n} \sum_{x=0}^{n/2-1} T(n/2 + x) \right) + O(n). \]

We now multiply both sides of the inequality by \(n/(n-2) \) to obtain:

\[T(n) \leq \left(\frac{2}{n-2} \sum_{x=0}^{n/2-1} T(n/2 + x) \right) + kn^2/(n-2). \]

We have replaced the \(O(n) \) by \(kn \) for some constant \(k \) before multiplying by \(n/(n-2) \). We do this because we will need to for the proof by induction below.

We now have a recurrence in a nice form. \(T(n) \) is on the left, and the right has terms of the form \(T(x) \) for \(x < n \). We can therefore “guess” that \(T(n) = O(n) \) and try to prove it. More precisely, we will prove by induction that \(T(n) \leq cn \) for some \(c \). Since the recurrence is in the stated form, we can substitute in on the right hand side and obtain
Analysis

\[T(n) \leq \left(\frac{2}{n-2} \sum_{x=0}^{n/2-1} T(n/2 + x) \right) + \frac{kn^2}{(n-2)} \]
\[\leq \left(\frac{2}{n-2} \sum_{x=0}^{n/2-1} c(n/2 + x) \right) + \frac{kn^2}{(n-2)} \]
\[= \left(\frac{2c}{n-2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) + \left(\frac{n}{2} - 1 \right) \left(\frac{n}{2} \right) / 2 + \frac{kn^2}{(n-2)} \]
\[= \left(\frac{2c}{n-2} \right) \left(\frac{3n^2}{8} - \frac{n}{4} \right) + \frac{kn^2}{(n-2)} \]
\[= \left(\frac{c}{n-2} \right) \left(\frac{3n^2}{4} - \frac{n}{8} \right) + \frac{kn^2}{(n-2)} \]
\[= \frac{1}{n-2} \left((3c/4 + k)n^2 - (c/8)n \right) \]
\[= \frac{n}{n-2} \left((3c/4 + k)n - (c/8) \right) \]

Looking at this last term, we see that the leading \(n/(n-2) \) is slightly larger than 1, so we can upper bound it by, say \(7/6 \) for \(n \geq 14 \) (there are many possible choices of upper bounds.) Our goal, remember, is to show that the term multiplying the \(n \) is at most \(c \), and as we will see, this suffices.

So we get

\[T(n) \leq (7/6) \left((3c/4 + k)n - (c/8) \right) . \]
Analysis

\[T(n) \leq (7/6) ((3c/4 + k)n - (c/8)) \ . \]

If the right hand side is at most \(cn \) we are done. Whether it is will depend on the relative values of \(c \) and \(k \). Let’s write the constraint we want

\[(7/6) ((3c/4 + k)n - (c/8)) \leq cn \]

and solve for \(c \) in terms of \(k \). We get

\[(7c/8 + 7k/6 - c)n \leq 7c/48 \]

or

\[(7k/6 - c/8)n \leq 7c/48. \]

Clearly, if \(7k/6 - c/8 < 0 \) this will hold. So we just choose \(c \) sufficiently larger than \(k \), e.g. \(c = 28k/3 \) and we are done.