In a graph, the distance between two vertices can be defined as follows:

\[d(v) = d(u) + w(u,v) \quad \text{for any vertex } v \]

Where \(d(v) \) is the distance of vertex \(v \) from some reference vertex \(u \), and \(w(u,v) \) is the weight of the edge connecting \(u \) and \(v \).

For any two vertices in a graph, the distance is given by:

\[d(u, v) = \min_{p} \sum_{i=1}^{n} w(u, v_{i}) \]

Where \(p \) is a path from \(u \) to \(v \).
1. \mathbb{E}

123 $\cdots \mathbb{E} 12 \cdots \mathbb{E} 12 \cdots \mathbb{E} \cdots \cdots \cdots \mathbb{E}$

\[\text{5 times} \]

$\text{S.P. } 10^3$

12, 1, 100, 101, 0, 51, 17, 3
Example

Dijkstra(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S ← ∅
3 Q ← V[G]
4 while Q ≠ ∅
5 do u ← EXTRACT-MIN(Q)
6 S ← S U {u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w)
Example

\[\text{Dijkstra}(G, w, s) \]
\[
1. \text{INITIALIZE-SINGLE-SOURCE}(G, s) \\
2. S \leftarrow \emptyset \\
3. Q \leftarrow V[G] \\
4. \text{while } Q \neq \emptyset \\
 \text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
 \text{S } \leftarrow S \cup \{u\} \\
 \text{for each vertex } v \in \text{Adj}[u] \\
 \text{do RELAX}(u, v, w) \\
5. \text{DECREASE-KEY}(E, \text{decrease-key}, O(E \lg V), \text{heap}) \\
6. \text{INSERTS}(V, \text{inserts}, O(V \lg V), \text{fib-heap}) \\
7. \text{EXTRACT-MIN}(V, \text{extract-min}, O(V \lg V), \text{fib-heap}) \
\]
Claim: When \(v \) is put in \(S \) (permanently labelled)
\[
d(v) = \delta(v).
\]

\[\text{Pf}\]
1. \(d(v) \geq \delta(v) \) because any alg that does a series of relax calls has this property
2. Assume \(\text{fpoc} \) that \(d(v) > \delta(v) \) and this is the first such vertex.

\[
\delta(x) = d(x) \\
\delta(y) = d(y) \quad \text{because} \quad (x,y) \text{ was relaxed when} \ x \text{ was added to} \ S.
\]

\[
d(y) = \delta(y) \leq \delta(v) < d(v) \quad \text{because} \quad y \in S \text{ and not} \ S_1 .
\]

\[
d(y) < d(v) \quad \text{and neither} \ y \text{ nor} \ v \text{ are in} \ S_1 . \text{ So}
\]

Diokstra's alg. will choose \(y \) \(\\neq v \).