Capacity of an s-t cut (S, T)

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

Flow across (S, T)

$$f(S, T) = \sum_{u \in S} f(u, v) - \sum_{u \in T} f(u, v)$$
For any cut \((S, T) \),

\[f(S, T) \leq c(S, T) \]

0 1 2 3 4 5 6 7 8 10....

<table>
<thead>
<tr>
<th>flows</th>
<th>cuts ((S, T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(c(S, T))</td>
</tr>
</tbody>
</table>
1 iteration of FF is $O(E)$ time

How many iterations?

Assume caps are ints
Each iteration sends ≥ 1 unit of flow

$f^* = \max \text{flow}$

$|f^*| \text{ iterations}$
poly-time for flow

augment along a shortest path
$O(V^3E)$