(u,v).f \quad f(u,v)

v.d \quad d(v)

NP-complete

Class of problems for which either all have poly-time algns. or none have poly algns.
Program to test if a binary number is even. Input is $\$\$ termina
Output is written immediately after $\$, 1 for yes, 0 for no.

- Read until $\$ (state q_0)
- Back up, check last digit (state q_1)
- if even, write a 1 (states q_2, q_3, q_F)
- if odd, write a 0 (states q_4, q_5, q_F)

Here is a program. Each cell is (new state, write symbol move)

state	input 0	input 1	input $\$
(q_0)	$(q_0, -, R)$	$(q_0, -, R)$	$(q_1, -, L)$
(q_1)	$(q_2, -, R)$	$(q_1, -, R)$	error
(q_2)	error	error	$(q_3, -, R)$
(q_3)	$(q_F, 1, -)$	$(q_F, 1, -)$	$(q_F, 1, -)$
(q_4)	error	error	$(q_5, -, R)$
(q_5)	$(q_F, 0, -)$	$(q_0, 0, -)$	$(q_0, 0, -)$
(c_F)	halt	halt	halt
Any computer/compiler can be "simulated" on a turing machine with only a poly amt. of slowdown.

P is invariant to compiler issues

Is L sorted? 2, 7, 10, 12

\[
\begin{align*}
S &= \{s, g, t\} \\
S &= \{s, b, t\} \quad \text{NO} \\
S &= \{s, b, a, t\} \quad \text{NO}
\end{align*}
\]
\[
\phi = (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \land (x_2 \lor x_4) \land (x_1 \lor \overline{x_3})
\]

IS there a way to set vars. so that \(\phi\) is true?

YES

\[
(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2})
\]

NO

Reductions

\(Y \leq X\) \(\text{we can use } X \text{ as a "substitute for solving } Y\)

\(Y\) is subtraction of two ints \(\text{(negation)}\)

\(X\) is addition of two ints \(\text{(easier)}\)

\((6,4)\) you know how to do your friend knows how to add.

want to compute \(6 - y\)

- Alg. Negate the \(4 \rightarrow (6, -4)\) give it to your friend.
- Friend return \(6 + (-4) \rightarrow 2\).
- You have 2.
Definition \(Y \leq X \) means

- \(Y \) is polynomial time reducible to \(X \), which means

 there exists a polynomial time computable function \(f \) that maps inputs to \(Y \) to inputs to \(X \), such that

 input \(y \) to problem \(Y \) returns \textbf{"Yes"} iff input \(f(y) \) to problem \(X \) returns \textbf{"Yes"}

Informally \(Y \leq X \) means that \(Y \) is \textbf{“not much harder than”} (\textbf{“easier than”}) \(X \)

\[
y \mapsto f(y) \quad \text{input to } Y \quad \mapsto \frac{y \in S}{y \not\in S}
\]

Theorem

If \(Y \leq X \) then \(X \in P \Rightarrow Y \in P \)

Contrapositive

If \(Y \leq X \) then \(Y \not\in P \Rightarrow X \not\in P \)
Theorem SAT is NP-complete

Proof idea: The turing machine program for any problem in NP can be verified by a polynomial sized SAT instance that encodes that the input is well formed and that each step follows legally from the next.

Implication We now have one NP-complete problem. We will now reduce other problems to it.