SAT is NP-complete.

New problem: \(3\text{-SAT} \equiv SAT\) w/ exactly 3 literals per clause

e.g. \((x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_4 \lor \overline{x}_5) \land (x_1 \lor x_3 \lor \overline{x}_4) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_6)\)

\(n = \#\) vars
\(m = \#\) clauses

\(3\text{-SAT}\) is a special case of \(\text{SAT}\).

1-SAT
\[x_1 \land x_2 \land \overline{x}_3 \land x_4 \land x_5\]
\[x_1 \land \overline{x}_1\]
easy

2-SAT \(O(n+m)\) time

3-SAT is NP-complete

pf

1) \(3\text{-SAT} \in NP\) \(\checkmark\) (follows because \(\text{SAT} \in NP\))

2) Choose a known NP-complete problem to reduce from

Choose \(\text{SAT}\)

3) Give an \(f\) that converts \(\text{SAT}\) inputs to

\(3\text{-SAT}\) inputs s.t. satisfiability is preserved.
SAT $\xrightarrow{f} \text{3-SAT}$

Describe f:

- Convert each SAT clause to a set of 3-SAT clauses.
- Let $k = \#$ literals in a clause.

If $k = 1$

$$x_1 \xrightarrow{f} (x_1 \lor x_1 \lor x_1)$$

If $k = 2$

$$(x_1 \lor x_2) \xrightarrow{f} (x_1 \lor x_2 \lor x_2)$$

If $k = 3$

$$(x_1 \lor x_2 \lor x_3) \xrightarrow{f} (x_1 \lor x_2 \lor x_3)$$
k = 5

If \(\phi \) is true, then at least one literal is true. Use \(y_i \)'s to sat. remaining clauses

If \(\phi \) is false, \(y_1 \lor (\neg y_1 \lor y_2) \lor y_2 \) is false

k > 5

(\(x_1 \lor x_2 \lor \cdots \lor x_r \))

If \(k = 4 \)

In
\(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \)

Set of clauses

\(\neg (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \)

If \(\phi \) is true, can be extended to a setting that makes \(\phi' \) true

- a setting of \(x_\ell \) and \(x_i \)
- the two make \(\phi' \) true

- a setting of \(x_\ell \) and \(x_i \) makes \(\phi' \) false, cannot be extended to a setting that makes \(\phi' \) true

\[\begin{align*}
\text{e.g.} & \quad x_1 = T, x_2 = x_3 = x_4 = F \Rightarrow y_1 = F \\
& \quad x_1 = x_2 = F, x_3 = x_4 = T \Rightarrow y_1 = T
\end{align*} \]

If \(\phi \) is true, then at least one literal is true, set \(y_1 \) so that the clause not containing \(x_i \) is true.

If \(\phi \) is false, then \(x_1 = x_2 = x_3 = x_4 = F \), so \((x_1 \lor x_2 \lor y_1 \lor (x_1 \lor x_2 \lor y_1)) \) is equiv. to \(y_1 \lor \neg y_1 \), which is false for any setting of \(y_1 \).
- Described f.
- f is poly time

clause w/ k vars \implies $k-2$ clauses of 3 vars.

Clauses blow up by a factor of n

vars blow up by a factor of n

- we argued that x is a yes instance to SAT

\[\implies f(x) \implies \exists \text{ 3-SAT} \]

\[SAT \leq \text{2-SAT} \]

\[(x_1 \lor x_2 \lor x_3 \lor x_4) \implies (x_1 \lor y_1) \land (\overline{y_1} \lor x_2) \]

Can't do this reduction.

This reduction doesn't work.

\[\underline{2 \cdot \text{SAT} \leq 3 \cdot \text{SAT}} \]

\[(x_1 \lor x_2) \implies (x_1 \lor x_2 \lor x_3) \]

tells me nothing
SAT ≤ 3-SAT

Clique

Def. a k-clique is a set of k vertices with all \((\binom{k}{2})\) edges between them.

1 2 3 4 5

Given \(G=(V, E)\) and an int \(k\).

Does \(G\) have a set of \(k\) vertices that form a k-clique?

G has a 4-clique
no 5-clique

Clique is NP-complete

1) Clique ∈ NP

2) Reduce from 3-SAT
Describe:\{3-SAT instances\} \rightarrow Graph G: x_i is sat (\Rightarrow)

$\emptyset = (x_1 v \overline{x}_2 v x_3) \land (\overline{x}_1 v x_2 v x_3) \land (x_1 v x_2 v \overline{x}_3)$

Strategy:
- node for each appearance of a var literal
- edges between literals that can simultaneously be true
- $k = \# clauses$

If \emptyset is sat, iff G has a k-clique

Dec 1-5:05 PM

If \emptyset is satisfiable, then there is a setting of the variables w/ at least one literal per clause
Set to true. This set of literals cannot contain both x_i and \overline{x}_i so in the graph the correspond nodes form a k-clique

\leq If G has a k-clique, the clique must consist of k nodes, 1 per clause, and any x_i or \overline{x}_i. Therefore you can set these literals to true and satisfy \emptyset.

Dec 1-5:15 PM