SAT
3-SAT
Clique

\[3 \text{-SAT} \leq \text{Clique} \]

\[(\land (\land (\land (\land (\land (\land \text{x is sat (x)} \land \text{a k-clique} (x)) \land \text{a k-clique} (x) \land \text{a k-clique} \]

Informal: clique, whose nodes are in groups of 3 if no intragroup edges 1 is hard.

Proof shows that a "special case" of clique is NP-complete leads that clique is NP-complete.
Vertex Cover

Given a graph $G = (V, E)$ and an integer k, a vertex cover $V' \subseteq V$ is a subset of the vertices such that $\forall (u, v) \in E$, $u \in V'$ or $v \in V'$ or both. Is there a vertex cover V' with $|V'| \leq k$?

VC in NP-complete

Proof

1) $VC \in NP$

What is a VC for a clique?

VC of a k-clique has $k-1$ vertices
Claim: G has a k-clique iff G' has a vertex cover of size k'.

Proof:

\Rightarrow Let C be a clique in G. Then C in G' has no edges in it.

\Rightarrow $V - C$ is a vertex cover of G'

\Leftarrow Let G' have a vertex cover of size k'. Then $V - D$ is a subset of vertices with no edges in it.

\Leftarrow In G', $V - D$ is a clique of size $k' = |V| + |D| - |V|. k' = k$.
Subset Sum

Given a set of integers \(S = \{ s_1, s_2, \ldots, s_n \} \) and a target integer \(t \).

Is there a subset \(S' \subseteq S \) such that

\[
\sum_{i \in S'} s_i = t.
\]

\(\{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\} \)

\(t = 3754 \quad SS \in NP \)

\(S' = \{1, 16, 64, 256, 1040, 1093, 1284\} \)

VC \leq SS

Main idea:

- Think of rows as (binary) numbers, sum them, interpret the sum as problems.

1. Coins
2. What is \(t \)?
3. What about \(k \)?

\[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 2 \\
\end{array} \]

\(VC \) is a set of rows, s.t. each column has at least one 1.

\(VC \) is a set of row vectors, the sum shall have all non-0 components.
Problems

1) Carries
 - use base 4
2) Target sum
 - introduce "dummy" entries
3) k
 - add a column to count

G has a VC of size k
\(\subseteq \)
SS has a subset sum to \(t \)

<table>
<thead>
<tr>
<th>vert</th>
<th>(e_4)</th>
<th>(e_3)</th>
<th>(e_2)</th>
<th>(e_1)</th>
<th>(e_0)</th>
<th>base 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1041</td>
</tr>
<tr>
<td>(x_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1284</td>
</tr>
<tr>
<td>(x_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1344</td>
</tr>
<tr>
<td>(x_3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1044</td>
</tr>
<tr>
<td>(y_0)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1093</td>
</tr>
<tr>
<td>(y_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>(y_2)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>(y_3)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3754</td>
</tr>
</tbody>
</table>

\(t = (3) \) 2 2 2 2 2 2
Dec 3-5:10 PM

\[\Rightarrow \text{take the vertices of the vertex cover, of size } k \]

They sum to

\[b_{xy} \Rightarrow (k) \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \]

adding

\[y \text{'s corresponding to } 1 \text{'s} \]

yielding

\[(k) 2 2 2 2 2 \]

and this is t.

Dec 3-5:13 PM

\[(k=) SS \text{ instance is yes } \Rightarrow G \text{ has a VC of size } k. \]

\[\text{PF} \]

- SS is yes, set of rows in the sum
 - must include \(k \times \) rows (\(k \) vertices)
 - for each column, I
 - must choose at least one \(
 \text{that has a 1 in the col.} \Rightarrow \text{these vertices cover all the edges.} \]
Hamiltonian Cycle

Given a graph \(G = (V,E) \)
is there a cycle visiting each vertex exactly once.

Traveling Salesman Problem

Given a graph \(G = (V,E) \) w/ edge weights \(w \), int \(B \). Is there a Hamiltonian cycle \(C \) s.t.

\[\sum_{e \in C} w_e \leq B \]