Linear programs

$$maximize \sum_{j=1}^{n} c_j x_j$$

 $\mathbf{subject to}$
 $\sum_{j=1}^{n} a_{ij} x_j \leq b_i \text{ for } i = 1, 2, \dots, m$
 $x_j \geq 0 \text{ for } j = 1, 2, \dots, n$.

Note: Any set of linear inequalities with linear objective function can be converted to this form.

Shortest Path LP

maximize d_t subject to $d_v \leq d_u + w(u,v) \text{ for each edge } (u,v) \in E ,$ $d_s = 0 .$

Maximum Flow LP

$$\begin{array}{ll} \textit{maximize} \sum\limits_{v \in V} f_{sv} & - \sum\limits_{v \in V} f_{vs} \\ \textbf{subject to} \\ & f_{uv} \leq c(u,v) \text{ for each } u,v \in V \\ & \sum\limits_{v \in V} f_{vu} = \sum\limits_{v \in V} f_{uv} \text{ for each } u \in V - \{s,t\} \ , \\ & f_{uv} \geq 0 \text{ for each } u,v \in V \ . \end{array}$$

Minimum Cost Flow LP

In minimum cost flow, edges have costs in addition to capacities.

Multicommodity Flow LP

In multicommodity flow, we have a set of commdodities, each of which must be sent as a flow, while the commodities obey joint capacity constraints.

Duality

Primal

$$maximize \sum_{j=1}^{n} c_j x_j$$

 $\mathbf{subject to}$
 $\sum_{j=1}^{n} a_{ij} x_j \leq b_i \text{ for } i = 1, 2, \dots, m$
 $x_j \geq 0 \text{ for } j = 1, 2, \dots, n$.

Dual

minimize
$$\sum_{i=1}^{m} b_i y_i$$

subject to
$$\sum_{i=1}^{m} a_{ij} y_i \geq c_j \text{ for } j = 1, 2, \dots, n,$$

$$y_i \geq 0 \text{ for } i = 1, 2, \dots, m.$$

LP Duality If both the primal and dual solution are feasible (have valid solutions), then the optimal solutions have the same objective value.