
NP-Completeness

Goal: We want some way to classify problems that are hard to solve, i.e.

problems for which we can not find polynomial time algorithms.

For many interesting problems

• we cannot find a polynomial time algorithm

• we cannot prove that no polynomial time algorithm exists

• the best we can do is formalize a class of NP-complete problems that

either all have polynomial time algorithms or none have polynomial time

algorithms

NP-completeness arises in many fields including

• biology

• chemistry

• economics

• physics

• engineering

• sports

• etc.

Goal in class:

To learn how to prove that problems are NP-complete.

We need a formalism for proving problems hard.

Turing Machine (simplified description)

A Turing Machine has

• Finite state control

• Infinite tape (each square can hold 0, 1, $, or be blank.

• Read-Write head

Each step of the finite state control is a function

f (current state, tape symbol) → (new state, symbol to write,movement of head)

Example

Program to test if a binary number is even. Input is $ terminated.

Output is written immediately after $, 1 for yes, 0 for no.

• Read until $ (state q0)

• Back up, check last digit (state q1)

• if even, write a 1 (states q2, q3, qF)

• if odd, write a 0 (states q4, q5, qF)

Here is a program. Each cell is (new state, write symbol move)
state input 0 input 1 input $

(q0) (q0,−, R) (q0,−, R) (q1,−, L)

(q1) (q2,−, R) (q4,−, R) error

(q2) error error (q3,−, R)

(q3) (qF , 1,−) (qF , 1,−) (qF , 1,−)

(q4) error error (q5,−, R)

(q5) (qF , 0,−) (q0, 1,−) (q0, 1,−)

(qF) halt halt halt

Church Turing Thesis The set of things that can be computed on a TM is

the same as the set of things that can be computed on any digital computer.

P

Definition Let P be defined as the set of problems that can be solved in

polynomial time on a TM (On an input of size n, they can be solved in

time O(nk) for some constant k)

Theorem P is the set of problems that can be solved in polynomial time

on the model of computation used in CSOR 4231 and on every modern

non-quantum digital computer.

Technicalities

• We assume a reasonable (binary) encoding of input

• Note that all computers are related by a polynomial time transforma-

tion. Think of this as a “compiler”

Further details

• We restrict attention to “yes-no” questions

• Shortest path is now “Given a graph G and a number b does the shortest

path from s to t have length at most b.

• We do not use the language framework from the book in class

Verification

Verification Given a problem X and a possible solution S, is S a solution

to X.

Example X is shortest paths and S is an s-t path in S that is claimed to

have length at most b, check whether the path really is of length at most b

Example X is sorting and S is an allegedly sorted list. Is the list really

sorted?

Claim Verification is no harder than solving a problem from scratch.

We write

Verification ≤ Solving

Def: NP is the set of problems that can be verified in polynomial time

Formally: Problem X with input of size n is in NP if there exists a

“certificate” y, |y| = poly(n) such that, using y, one can verify whether

a solution x is really a solution in polynomial time. (Think of y as the

“answer”)

Some problems

Longest Path Given a graph G, and number k is the longest simple path

from s to t of length ≥ k.

Satisfiability Given a formula Φ in CNF (conjunctive normal form), does

there exist a satisfying assignment to Φ, i.e. an assignment of the variables

that evaluates to true.

Big Question

P = NP ??

Is solving a problem no harder than verifying?

Don’t know answer. Instead we will identify “hardest” problems in NP.

If any of these are in P then all of NP is in P.

complexity

P

NP

NP
complete

NP-complete

Definition Problem X is NP-complete if

1. X ∈ NP

2. Y ≤ X ∀Y ∈ NP

Definition Y ≤ X means

• Y is polynomial time reducible to X, which means

there exists a polynomial time computable function f that maps inputs

to Y to inputs to X, such that

input y to problem Y returns “Yes” iff input f (y) to problem X returns

“Yes”

Informally Y ≤ X means that Y is “not much harder than” (“easier than”)

X

Theorem

If Y ≤ X then X ∈ P ⇒ Y ∈ P

Contrapositive

If Y ≤ X then Y 6∈ P ⇒ X 6∈ P

SAT

Theorem SAT is NP-complete

Proof idea: The turing machine program for any problem in NP can be

verified by a polynomial sized SAT instance that encodes that the input is

well formed and that each step follows legally from the next.

Implication We now have one NP-complete problem. We will now reduce

other problems to it.

Reductions

• If I want to show that X is easy, I show that in polynomial time I can

reduce X to Y, where I already know that Y is easy.

• If I want to show that X is hard, then I reduce Y to X, where I already

know that Y is hard.

• So if SAT ≤ X, then X is hard.

Showing X is NP-complete

To show that X is NP-complete, I show:

1. X ∈ NP

2. For some problem Z that I know to be NP-complete Z ≤ X

Showing X is NP-complete

To show that X is NP-complete, I show:

1. X ∈ NP

2. For some problem Z that I know to be NP-complete Z ≤ X

Expanded version: To show that X is NP-complete, I show:

1. X ∈ NP

2. Find a known NP-complete problem Z.

3. Describe f , which maps input z to Z to input f (z) to X.

4. Show that Z with input z returns “yes” iff X with input f (z)returns“yes′

5. Show that f runs in polynomial time.

