Greedy

Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods \((s_i, f_i)\) are:

\[(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)\]

Which ones should we schedule?
Greedy

Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods \((s_i, f_i)\) are:

\[(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)\]

Which ones should we schedule?

\[
\begin{array}{ccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]
Sort by finishing time, renumber with 1 having earliest finishing time
Output 1
last = f_1
for i = 2 to n
 if (s_i \leq last)
 Output i
 last = f_i
Proving a Greedy Algorithm is Optimal

Two components:

1. Optimal substructure

2. **Greedy Choice Property:** There exists an optimal solution that is consistent with the greedy choice made in the first step of the algorithm.
Optimal Substructure

- Let $c[i, j]$ be the number of activities scheduled from time i to time j

$$c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset, \\
\max_{a_k \in S_{ij}} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset
\end{cases}$$

(1)
Greedy Choice

Greedy Choice Property

1. Let S_k be a nonempty subproblem containing the set of activities that finish after activity a_k.
2. Let a_m be an activity in S_k with the earliest finish time.
3. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k.

Proof

- Let A_k be a maximum-size subset of mutually compatible activities in S_k,
- let a_j be the activity in A_k with the earliest finish time.
- If $a_j = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k.
- If $a_j \neq a_m$, let the set $A'_k = A_k - \{a_j\} \cup \{a_m\}$
- The activities in A'_k are disjoint, because
 - the activities in A_k are disjoint,
 - a_j is the first activity in A_k to finish,
 - $f_m \leq f_j$.
- Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k, and it includes a_m.
Procedure for Designing a Greedy Algorithm

1. Identify optimal substructure
2. Cast the problem as a greedy algorithm with the greedy choice property
3. Write a simple iterative algorithm
Robbery

- I want to rob a house and I have a knapsack which holds B pounds of stuff
- I want to fill the knapsack with the most profitable items

<table>
<thead>
<tr>
<th>item</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>value</td>
<td>60</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>value/weight</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Two variants
- integral knapsack: Take an item or leave it
- fractional knapsack: Can take a fraction of an item (infinitely divisible)
Fractional vs. Integral Knapsack

- Both fractional and integral knapsack have optimal substructure.
- Only fractional knapsack has the greedy choice property.
Fractional Knapsack

Greedy Choice Property: Let j be the item with maximum v_i/w_i. Then there exists an optimal solution in which you take as much of item j as possible.

Proof

- Suppose fpoc, that there exists an optimal solution in you didn’t take as much of item j as possible.

- If the knapsack is not full, add some more of item j, and you have a higher value solution. **Contradiction**

- We thus assume the knapsack is full.

- There must exist some item $k \neq j$ with $v_k/w_k < v_j/w_j$ that is in the knapsack.

- We also must have that not all of j is in the knapsack.

- We can therefore take a piece of k, with ϵ weight, out of the knapsack, and put a piece of j with ϵ weight in.

- This increases the knapsacks value by

$$\epsilon \frac{v_j}{w_j} - \epsilon \frac{v_k}{w_k} = \epsilon \left(\frac{v_j}{w_j} - \frac{v_k}{w_k} \right) > 0$$

Contradition to the original solution being optimal.
Algorithm

1. Sort items by v_j/w_j, renumber.
2. For $i = 1$ to n
 - Add as much of item i as possible

Question Why does this fail for integer knapsack.