
Huffman Codes

Coding is the problem of representing data in another representation.

Typically, we want that representation to be concise. We will encode in

binary in this lecture. We call the encoding of a character a codeword .

Different types of codes

• fixed length code. Each codeword uses the same number of bits.

• variable length code. Codewords can use differing numbers of bits.

Example
character frequency fixed length code variable length code

a .45

b .13

c .12

d .16

e .9

f .5

Huffman Codes

Different types of codes

• fixed length code. Each codeword uses the same number of bits.

• variable length code. Codewords can use differing numbers of bits.

character frequency fixed length code variable length code

a .45 000 0

b .13 001 101

c .12 010 100

d .16 011 111

e .09 100 1101

f .05 101 1100

Evaluation of code: Expected number of bits per codeword.

Fixed length code: 3

Variable length code:

.45(1) + .13(3) + .12(3) + .16(3) + .09(4) + .05(4) = 2.24

Prefix free codes: No codeword is a prefix of any other codeword.

Decoding: A variable length code must be prefix free.

Trees

Codes can be represented as trees.

• Let T be a tree corresponding to a prefix code,

• Let f (c) denote the frequency of character c.

• Let dT (c) denote the depth of c’s leaf in T (dT (c) is also the length of the

codeword for character c.)

The number of bits required to encode a file is thus

B(T) =
∑
c∈C

f (c)dT (c) ,

which we define as the cost of the tree T .

Huffman Coding Algorithm

Huffman(C)

1 n← |C|
2 Q← C

3 for i← 1 to n− 1

4 do allocate a new node z

5 left [z]← x← Extract-Min(Q)

6 right [z]← y ← Extract-Min(Q)

7 f [z]← f [x] + f [y]

8 Insert(Q, z)

9 return Extract-Min(Q) � Return the root of the tree.

Proving Huffman is optimal

Theorem Let C be an alphabet in which each character c ∈ C has frequency

f [c]. Let x and y be two characters in C having the lowest frequencies. Then

there exists an optimal prefix code for C in which the codewords for x and

y have the same length and differ only in the last bit.

Proof

Idea: Take a tree T representing an arbitrary optimal prefix code and

modify it to make a tree representing another optimal prefix code such

that the characters x and y appear as sibling leaves of maximum depth in

the new tree. If we can do this, then their codewords will have the same

length and differ only in the last bit.

Proving Huffman is optimal

Theorem Let C be an alphabet in which each character c ∈ C has frequency

f [c]. Let x and y be two characters in C having the lowest frequencies. Then

there exists an optimal prefix code for C in which the codewords for x and

y have the same length and differ only in the last bit.

Details:

• Let a and b be two characters that are sibling leaves of maximum depth

in T . (wlog, f [a] ≤ f [b] and f [x] ≤ f [y].)

• f [x] ≤ f [a] and f [y] ≤ f [b], since f [x] and f [y] are the two lowest leaf

frequencies.

• Exchange the positions in T of a and x to produce a tree T ′.

• Exchange the positions in T ′ of b and y to produce a tree T ′′.

Proof Continued

• Let a and b be two characters that are sibling leaves of maximum depth

in T . (wlog, f [a] ≤ f [b] and f [x] ≤ f [y].)

• f [x] ≤ f [a] and f [y] ≤ f [b], since f [x] and f [y] are the two lowest leaf

frequencies.

• Exchange the positions in T of a and x to produce a tree T ′.

• Exchange the positions in T ′ of b and y to produce a tree T ′′.

Now look at the difference between B(T) and B(T ′)

B(T)−B(T ′) =
∑
c∈C

f (c)dT (c)− ∑
c∈C

f (c)dT ′(c)

= f [x]dT (x) + f [a]dT (a)− f [x]dT ′(x)− f [a]dT ′(a)

= f [x]dT (x) + f [a]dT (a)− f [x]dT (a)− f [a]dT (x)

= (f [a]− f [x])(dT (a)− dT (x))

≥ 0 ,

Reasons for last inequality:

• f [a]− f [x] is nonnegative because x is a minimum-frequency leaf,

• dT (a)− dT (x) is nonnegative because a is a leaf of maximum depth in T .

Proof Finished

Now look at the difference between B(T) and B(T ′)

B(T)−B(T ′) =
∑
c∈C

f (c)dT (c)− ∑
c∈C

f (c)dT ′(c)

= f [x]dT (x) + f [a]dT (a)− f [x]dT ′(x)− f [a]dT ′(a)

= f [x]dT (x) + f [a]dT (a)− f [x]dT (a)− f [a]dT (x)

= (f [a]− f [x])(dT (a)− dT (x))

≥ 0 ,

Reasons for last inequality:

• f [a]− f [x] is nonnegative because x is a minimum-frequency leaf,

• dT (a)− dT (x) is nonnegative because a is a leaf of maximum depth in T .

Conclusions:

• B(T ′) ≤ B(T)

• By same argument – B(T ′′) ≤ B(T ′)

• Conclusions

• B(T ′′) ≤ B(T), which completes the proof.which the lemma follows.

