Longest Common Subsequence

A subsequence of a string S, is a set of characters that appear in left-to-right order, but not necessarily consecutively.

Example

$$ACTTGC$$

- ACT, $ATTC$, T, $ACTTGC$ are all subsequences.
- TTA is not a subsequence

A common subsequence of two strings is a subsequence that appears in both strings. A longest common subsequence is a common subsequence of maximal length.

Example

$$S_1 = AAACCGTGAGTTATTGCCTAGAA$$
$$S_2 = CACCCCTAAGGTACCTTTGGTTC$$
Example

\[S_1 = AAACCGTGAGTTATTCTGTCTAGAA \]
\[S_2 = CACCCCTAAGGTACCTTTGTTTC \]

LCS is

\[ACCTAGTACTTTTGG \]

Has applications in many areas including biology.
Algorithm 1

Enumerate all subsequences of S_1, and check if they are subsequences of S_2.

Questions:
- How do we implement this?
- How long does it take?
Optimal Substructure

Theorem Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}.
Proof

Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.

3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}.

Proof

1. If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length $k + 1$, contradicting the supposition that Z is a longest common subsequence of X and Y. Thus, we must have $z_k = x_m = y_n$. Now, the prefix Z_{k-1} is a length-$(k-1)$ common subsequence of X_{m-1} and Y_{n-1}. We wish to show that it is an LCS. Suppose for the purpose of contradiction that there is a common subsequence W of X_{m-1} and Y_{n-1} with length greater than $k - 1$. Then, appending $x_m = y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.

2. If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y.
3. The proof is symmetric to the previous case.
Recursion for length

\[c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0, \\
c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\
\max(c[i, j - 1], c[i - 1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j.
\end{cases} \] (1)
Code

\[
LCS - Length(X, Y)
\]

1. \[m \leftarrow \text{length}[X] \]
2. \[n \leftarrow \text{length}[Y] \]
3. \[\text{for } i \leftarrow 1 \text{ to } m \]
 \[\text{do } c[i, 0] \leftarrow 0 \]
4. \[\text{for } j \leftarrow 0 \text{ to } n \]
 \[\text{do } c[0, j] \leftarrow 0 \]
5. \[\text{for } i \leftarrow 1 \text{ to } m \]
 \[\text{do } \text{for } j \leftarrow 1 \text{ to } n \]
 \[\text{do if } x_i = y_j \]
 \[\text{then } c[i, j] \leftarrow c[i - 1, j - 1] + 1 \]
 \[b[i, j] \leftarrow "\" \]
 \[\text{else if } c[i - 1, j] \geq c[i, j - 1] \]
 \[\text{then } c[i, j] \leftarrow c[i - 1, j] \]
 \[b[i, j] \leftarrow "↑" \]
 \[\text{else } c[i, j] \leftarrow c[i, j - 1] \]
 \[b[i, j] \leftarrow "←" \]
6. \[\text{return } c \text{ and } b \]