Longest Common Subsequence

A subsequence of a string S, is a set of characters that appear in left-to-right order, but not necessarily consecutively.

Example

ACTTGCG

- $A C T$, $A T T C, T$, $A C T T G C$ are all subsequences.
- $T T A$ is not a subequence

A common subequence of two strings is a subsequence that appears in both strings. A longest common subequence is a common subsequence of maximal length.

Example

$$
\begin{aligned}
& S_{1}=A A A C C G T G A G T T A T T C G T T C T A G A A \\
& S_{2}=C A C C C C T A A G G T A C C T T T G G T T C
\end{aligned}
$$

Example

$$
\begin{aligned}
& S_{1}=A A A C C G T G A G T T A T T C G T T C T A G A A \\
& S_{2}=C A C C C C T A A G G T A C C T T T G G T T C
\end{aligned}
$$

LCS is
ACCT AGT ACTTTG

Has applications in many areas including biology.

Algorithm 1

Enumerate all subsequences of S_{1}, and check if they are subsequences of S_{2}.

Questions:

- How do we implement this?
- How long does it take?

Optimal Substructure

Theorem Let $X=<x_{1}, x_{2}, \ldots, x_{m}>$ and $Y=<y_{1}, y_{2}, \ldots, y_{n}>$ be sequences, and let $Z=<z_{1}, z_{2}, \ldots, z_{k}>$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ implies that Z is an LCS of X_{m-1} and Y.
3. If $x_{m} \neq y_{n}$, then $z_{k} \neq y_{n}$ implies that Z is an LCS of X and Y_{n-1}.

Proof

Let $X=<x_{1}, x_{2}, \ldots, x_{m}>$ and $Y=<y_{1}, y_{2}, \ldots, y_{n}>$ be sequences, and let $Z=<z_{1}, z_{2}, \ldots, z_{k}>$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ implies that Z is an LCS of X_{m-1} and Y.
3. If $x_{m} \neq y_{n}$, then $z_{k} \neq y_{n}$ implies that Z is an LCS of X and Y_{n-1}.

Proof

1. If $z_{k} \neq x_{m}$, then we could append $x_{m}=y_{n}$ to Z to obtain a common subsequence of X and Y of length $k+1$, contradicting the supposition that Z is a longest common subsequence of X and Y. Thus, we must have $z_{k}=x_{m}=y_{n}$. Now, the prefix Z_{k-1} is a length- $(k-1)$ common subsequence of X_{m-1} and Y_{n-1}. We wish to show that it is an LCS. Suppose for the purpose of contradiction that there is a common subsequence W of X_{m-1} and Y_{n-1} with length greater than $k-1$. Then, appending $x_{m}=y_{n}$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.
2. If $z_{k} \neq x_{m}$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_{m} and Y, contradicting the assumption that Z is an LCS of X and Y.
3. The proof is symmetric to the previous case.

Recursion for length

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \tag{1}\\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (c[i, j-1], c[i-1, j]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

Code

```
LCS - Length \((X, Y)\)
    \(m \leftarrow\) length \([X]\)
    \(n \leftarrow\) length \([Y]\)
    for \(i \leftarrow 1\) to \(m\)
        do \(c[i, 0] \leftarrow 0\)
    for \(j \leftarrow 0\) to \(n\)
    do \(c[0, j] \leftarrow 0\)
    for \(i \leftarrow 1\) to \(m\)
        do for \(j \leftarrow 1\) to \(n\)
        do if \(x_{i}=y_{j}\)
                        then \(c[i, j] \leftarrow c[i-1, j-1]+1\)
                    \(b[i, j] \leftarrow\) " "
                        else if \(c[i-1, j] \geq c[i, j-1]\)
                then \(c[i, j] \leftarrow c[i-1, j]\)
                    \(b[i, j] \leftarrow " \uparrow "\)
            else \(c[i, j] \leftarrow c[i, j-1]\)
                        \(b[i, j] \leftarrow " \leftarrow "\)
    return \(c\) and \(b\)
```

