Longest Common Subsequence

A subsequence of a string S, is a set of characters that appear in left-to-right order, but not necessarily consecutively.

Example

ACTTGCG

- \bullet ACT , ATTC , T , ACTTGC are all subsequences.
- TTA is not a subequence

A common subequence of two strings is a subsequence that appears in both strings. A longest common subequence is a common subsequence of maximal length.

Example

 $S_1 = AAACCGTGAGTTATTCGTTCTAGAA$ $S_2 = CACCCCTAAGGTACCTTTGGTTC$

Example

 $S_{1} = AAACCGTGAGTTATTCGTTCTAGAA$ $S_{2} = CACCCCTAAGGTACCTTTGGTTC$

LCS is

ACCTAGTACTTTG

Has applications in many areas including biology.

Algorithm 1

Enumerate all subsequences of S_1 , and check if they are subsequences of S_2 .

Questions:

- How do we implement this?
- How long does it take?

Optimal Substructure

Theorem Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.

3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Proof

Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.

3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Proof

- 1. If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k + 1, contradicting the supposition that Z is a *longest* common subsequence of X and Y. Thus, we must have $z_k = x_m = y_n$. Now, the prefix Z_{k-1} is a length-(k-1) common subsequence of X_{m-1} and Y_{n-1} . We wish to show that it is an LCS. Suppose for the purpose of contradiction that there is a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k - 1. Then, appending $x_m = y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.
- 2. If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y.

3. The proof is symmetric to the previous case.

Recursion for length

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 ,\\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j ,\\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j . \end{cases}$$
(1)

Code

17 return c and b