
Basics of Algorithm Analysis

• We measure running time as a function of n, the size of the input (in

bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” oper-

ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer

following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)

• Average case (used if we understand the average)

• Worst case (used most often)

We measure as a function of n, and ignore low order terms.

• 5n3 + n− 6 becomes n3

• 8n log n− 60n becomes n log n

• 2n + 3n4 becomes 2n



Asymptotic notation

big-O

O(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .
Alternatively, we say

f (n) = O(g(n)) if there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Informally, f (n) = O(g(n)) means that f (n) is asymptotically less than or

equal to g(n).

big-Ω

Ω(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .
Alternatively, we say

f (n) = Ω(g(n)) if there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

Informally, f (n) = Ω(g(n) means that f (n) is asymptotically greater than

or equal to g(n).



big-Θ

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n)).

Informally, f (n) = Θ(g(n) means that f (n) is asymptotically equal to g(n).

INFORMAL summary

• f (n) = O(g(n)) roughly means f (n) ≤ g(n)

• f (n) = Ω(g(n)) roughly means f (n) ≥ g(n)

• f (n) = Θ(g(n)) roughly means f (n) = g(n)

• f (n) = o(g(n)) roughly means f (n) < g(n)

• f (n) = w(g(n)) roughly means f (n) > g(n)

We use these to classify algorithms into classes, e.g. n, n2, n log n, 2n.

See chart for justification



3 useful formulas

Arithmetic series

n∑
i=1
i =

n(n + 1)

2

Geometric series

∞∑
i=0
ai =

1

1− a
for 0 < a < 1

Harmonic series

n∑
i=1

1

i
= lnn + O(1) = Θ(lnn)



Algorithmic Correctness

• Very important, but we won’t typically prove correctness from first

principles.

• We will use loop invariants

• We will use other problem specific methods



MergeSort

Merge− Sort(A, p, r)
1 if p < r

2 q = b(p + r)/2c
3 Merge-Sort(A, p, q)

4 Merge-Sort(A, q + 1, r)

5 Merge(A, p, q, r)

Let T (n) be the running time of MergeSort on n items. Merge takes O(n)

time.

T (n) =

 Θ(1) if n = 1 ,

2T (n/2) + Θ(n) if n > 1 .
(1)



3 Recurrence Trees

1. T (n) = 2T (n/2) + n

2. T (n) = 2T (n/2) + 1

3. T (n) = 2T (n/2) + n2



Master Theorem

Master Theorem for Recurrences Let a ≥ 1 and b > 1 be constants, let f (n)

be a function, and let T (n) be defined on the nonnegative integers by the

recurrence

T (n) = aT (n/b) + f (n) ,

where we interpret n/b to mean either bn/bc or dn/be. Then T (n) can be

bounded asymptotically as follows.

1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a lg n).

3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if af (n/b) ≤ cf (n) for

some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n)).


