Basics of Algorithm Analysis

• We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” operations take “1” unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)

• Average case (used if we understand the average)

• Worst case (used most often)

We measure as a function of n, and ignore low order terms.

• $5n^3 + n - 6$ becomes n^3

• $8n \log n - 60n$ becomes $n \log n$

• $2^n + 3n^4$ becomes 2^n
Asymptotic notation

big-O

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} . \]

Alternatively, we say

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}

Informally, \(f(n) = O(g(n)) \) means that \(f(n) \) is asymptotically less than or equal to \(g(n) \).

big-Ω

\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} . \]

Alternatively, we say

\[f(n) = \Omega(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}

Informally, \(f(n) = \Omega(g(n)) \) means that \(f(n) \) is asymptotically greater than or equal to \(g(n) \).
\textbf{big-Θ}

\[f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)). \]

Informally, \(f(n) = \Theta(g(n)) \) means that \(f(n) \) is asymptotically equal to \(g(n) \).

\textbf{INFORMAL summary}

- \(f(n) = O(g(n)) \) roughly means \(f(n) \leq g(n) \)
- \(f(n) = \Omega(g(n)) \) roughly means \(f(n) \geq g(n) \)
- \(f(n) = \Theta(g(n)) \) roughly means \(f(n) = g(n) \)
- \(f(n) = o(g(n)) \) roughly means \(f(n) < g(n) \)
- \(f(n) = w(g(n)) \) roughly means \(f(n) > g(n) \)

We use these to \textbf{classify} algorithms into classes, e.g. \(n, n^2, n \log n, 2^n \).

See chart for justification
3 useful formulas

Arithmetic series

\[\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \]

Geometric series

\[\sum_{i=0}^{\infty} a^i = \frac{1}{1 - a} \quad \text{for } 0 < a < 1 \]

Harmonic series

\[\sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1) = \Theta(\ln n) \]
Algorithmic Correctness

- Very important, but we won’t typically prove correctness from first principles.
- We will use loop invariants
- We will use other problem specific methods
MergeSort

MergeSort(A, p, r)

1. if $p < r$
2. \[q = \lfloor (p + r)/2 \rfloor \]
3. MergeSort(A, p, q)
4. MergeSort($A, q + 1, r$)
5. Merge(A, p, q, r)

Let $T(n)$ be the running time of MergeSort on n items. Merge takes $O(n)$ time.

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases}
\]
3 Recurrence Trees

1. \(T(n) = 2T(n/2) + n \)
2. \(T(n) = 2T(n/2) + 1 \)
3. \(T(n) = 2T(n/2) + n^2 \)
Master Theorem

Master Theorem for Recurrences Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function, and let \(T(n) \) be defined on the nonnegative integers by the recurrence

\[
T(n) = aT(n/b) + f(n)
\]

where we interpret \(n/b \) to mean either \(\lfloor n/b \rfloor \) or \(\lceil n/b \rceil \). Then \(T(n) \) can be bounded asymptotically as follows.

1. If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \).

2. If \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a \lg n}) \).

3. If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \).