Basics of Algorithm Analysis

e We measure running time as a function of n, the size of the input (in
bytes assuming a reasonable encoding).

e We work in the RAM model of computation. All “reasonable” oper-
ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer
following, writing a value, one byte of 1/0...)

What is the running time of an algorithm
e Best case (seldom used)
e Average case (used if we understand the average)

e Worst case (used most often)

We measure as a function of n, and ignore low order terms.
e 5n’ +n — 6 becomes n’
e 8nlogn — 60n becomes nlogn

e 2" + 3n* becomes 2"



Asymptotic notation

big-O
O(g(n)) ={f(n) : there exist positive constants ¢ and n, such that
0< f(n) <cg(n) for all n > ny} .

Alternatively, we say

f(n) = O(g(n)) if there exist positive constants ¢ and n, such that
0 < f(n) <cg(n) for all n > ngy}

Informally, f(n) = O(g(n)) means that f(n) is asymptotically less than or
equal to g(n).

big-Q

Q(g(n)) = {f(n) : there exist positive constants ¢ and ny such that
0<cg(n) < f(n) for all n > ny} .

Alternatively, we say

f(n) =Q(g(n)) if there exist positive constants ¢ and nj such that
0 <cg(n) < f(n) for all n > ny} .

Informally, f(n) = ((g(n) means that f(n) is asymptotically greater than
or equal to g(n).



big-0

f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = QAg(n))
Informally, f(n) = ©(g(n) means that f(n) is asymptotically equal to g(n).

INFORMAL summary
® f(n) = O(g(n)) roughly means f(n) < g(n)
o f(n) =(g(n)) roughly means f(n) > g(n)
(n) = ©(g(n)) roughly means f(n) = g(n)
(n) = o(g(n)) roughly means f(n) < g(n)
n) = w(g(n)) roughly means f(n) > g(n)

We use these to classify algorithms into classes, e.g. n, n?, nlogn, 2".

See chart for justification



Arithmetic series

Geometric series

Harmonic series

3 useful formulas

zn:i:n(nJrl)

i=1 2
00 1
Sa = for0<a<1
1=0 1l —a



Algorithmic Correctness

e Very important, but we won’t typically prove correctness from first
principles.

e We will use loop invariants

e We will use other problem specific methods



MergeSort

Merge — Sort(A,p, )

1 ifp<r

2 g=lp+n)/2]
MERGE-SORT(A, p, q)
MERGE-SORT(A, q+ 1,7)
MERGE(A, p, q, 1)

CU = W

Let T'(n) be the running time of MergeSort on n items. Merge takes O(n)
time.
] e) ifn=1,
T(n) = { 2T(n/2) +O(n) ifn>1. (1)



3 Recurrence Trees




Master Theorem

Master Theorem for Recurrences Let a > 1 and b > 1 be constants, let f(n)
be a function, and let T(n) be defined on the nonnegative integers by the
recurrence

T(n) = aT(n/b) + f(n) |
where we interpret n/b to mean either |[n/b| or [n/b|. Then T(n) can be
bounded asymptotically as follows.

1. If f(n) = O(n'*%%¢) for some constant ¢ > 0, then T'(n) = O(n'*& ),
2. If f(n) = ©(n°?), then T(n) = O(n°®*1gn).
)

3. If f(n) = Q(n°®*") for some constant ¢ > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O(f(n)).



