
Matrix-Chain Multiplication

• Let A be an n by m matrix, let B be an m by p matrix, then

C = AB is an n by p matrix.

• C = AB can be computed in O(nmp) time, using traditional matrix

multiplication.

• Suppose I want to compute A1A2A3A4 .

• Matrix Multiplication is associative, so I can do the multiplication in

several different orders.

Example:

• A1 is 10 by 100 matrix

• A2 is 100 by 5 matrix

• A3 is 5 by 50 matrix

• A4 is 50 by 1 matrix

• A1A2A3A4 is a 10 by 1 matrix



Example

• A1 is 10 by 100 matrix

• A2 is 100 by 5 matrix

• A3 is 5 by 50 matrix

• A4 is 50 by 1 matrix

• A1A2A3A4 is a 10 by 1 matrix

5 different orderings = 5 different parenthesizations

• (A1(A2(A3A4)))

• ((A1A2)(A3A4))

• (((A1A2)A3)A4)

• ((A1(A2A3))A4)

• (A1((A2A3)A4))

Each parenthesization is a different number of mults

Let Aij = Ai · · ·Aj



Example

• A1 is 10 by 100 matrix, A2 is 100 by 5 matrix, A3 is 5 by 50 matrix,

A4 is 50 by 1 matrix, A1A2A3A4 is a 10 by 1 matrix.

• (A1(A2(A3A4)))

– A34 = A3A4 , 250 mults, result is 5 by 1

– A24 = A2A34 , 500 mults, result is 100 by 1

– A14 = A1A24 , 1000 mults, result is 10 by 1

– Total is 1750

• ((A1A2)(A3A4))

– A12 = A1A2 , 5000 mults, result is 10 by 5

– A34 = A3A4 , 250 mults, result is 5 by 1

– A14 = A12A34) , 50 mults, result is 10 by 1

– Total is 5300

• (((A1A2)A3)A4)

– A12 = A1A2 , 5000 mults, result is 10 by 5

– A13 = A12A3 , 2500 mults, result is 10 by 50

– A14 = A13A4 , 500 mults, results is 10 by 1

– Total is 8000



Example

• A1 is 10 by 100 matrix, A2 is 100 by 5 matrix, A3 is 5 by 50 matrix,

A4 is 50 by 1 matrix, A1A2A3A4 is a 10 by 1 matrix.

• ((A1(A2A3))A4)

– A23 = A2A3 , 25000 mults, result is 100 by 50

– A13 = A1A23 , 50000 mults, result is 10 by 50

– A14 = A13A4 , 500 mults, results is 10 by

– Total is 75500

• (A1((A2A3)A4))

– A23 = A2A3 , 25000 mults, result is 100 by 50

– A24 = A23A4 , 5000 mults, result is 100 by 1

– A14 = A1A24 , 1000 mults, result is 10 by 1

– Total is 31000

Conclusion Order of operations makes a huge difference. How do we

compute the minimum?



One approach

Parenthesization A product of matrices is fully parenthesized if it is either

• a single matrix, or

• a product of two fully parenthesized matrices, surrounded by parenthe-

ses

Each parenthesization defines a set of n-1 matrix multiplications. We just

need to pick the parenthesization that corresponds to the best ordering.

How many parenthesizations are there?



One approach

Parenthesization A product of matrices is fully parenthesized if it is either

• a single matrix, or

• a product of two fully parenthesized matrices, surrounded by parenthe-

ses

Each parenthesization defines a set of n-1 matrix multiplications. We just

need to pick the parenthesization that corresponds to the best ordering.

How many parenthesizations are there?

Let P(n) be the number of ways to parenthesize n matrices.

P (n) =


∑n−1

k=1 P (k)P (n− k) if n ≥ 2

1 if n = 1

This recurrence is related to the Catalan numbers, and solves to

P (n) = Ω(4n/n3/2).

Conclusion Trying all possible parenthesizations is a bad idea.



Use dynamic programming

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution bottom-up

4. Construct an optimal solution from the computed information

Structure of an optimal solution If the outermost parenthesization is

((A1A2 · · ·Ai)(Ai+1 · · ·An))

then the optimal solution consists of solving A1i and Ai+1,n optimally

and then combining the solutions.



Proof

Structure of an optimal solution If the outermost parenthesization is

((A1A2 · · ·Ai)(Ai+1 · · ·An))

then the optimal solution consists of solving A1i and Ai+1,n optimally

and then combining the solutions.

Proof: Consider an optimal algorithm that does not solve A1i optimally.

Let x be the number of multiplications it does to solve A1i , y be the

number of multiplications it does to solve Ai+1,n , and z be the number of

multiplications it does in the final step. The total number of multiplications

is therefore

x + y + z.

But since it is not solving A1i optimally, there is a way to solve A1i

using x′ < x multiplications. If we used this optimal algorithm instead of

our current one for A1i , we would do

x′ + y + z < x + y + z

multiplications and therefore have a better algorithm, contradicting the

fact that our algorithms is optimal.



Proof

Proof: Consider an optimal algorithm that does not solve A1i optimally.

Let x be the number of multiplications it does to solve A1i , y be the

number of multiplications it does to solve Ai+1,n , and z be the number of

multiplications it does in the final step. The total number of multiplications

is therefore

x + y + z.

But since it is not solving A1i optimally, there is a way to solve A1i

using x′ < x multiplications. If we used this optimal algorithm instead of

our current one for A1i , we would do

x′ + y + z < x + y + z

multiplications and therefore have a better algorithm, contradicting the

fact that our algorithms is optimal.

Meta-proof that is not a correct proof Our problem consists of subprob-

lems, assume we didn’t solve the subproblems optimally, then we could

just replace them with an optimal subproblem solution and have a better

solution.



Recursive solution

In the enumeration of the P (n) = Ω(4n/n3/2) subproblems, how many

unique subproblems are there?



Recursive solution

In the enumeration of the P (n) = Ω(4n/n3/2) subproblems, how many

unique subproblems are there?

Answer: A subproblem is of the form Aij with 1 ≤ i, j ≤ n , so there are

O(n2) subproblems!

Notation

• Let Ai be pi−1 by pi .

• Let m[i, j] be the cost of computing Aij

If the final multiplication for Aij is Aij = AikAk+1,j then

m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj .

We don’t know k a priori, so we take the minimum

m[i, j] =


0 if i = j ,

min
i≤k<j
{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j

Direct recursion on this does not work! We must use the fact that there

are at most O(n2) different calls. What is the order?



The final code

Matrix-Chain-Order(p)

1 n← length[p]− 1

2 for i← 1 to n

3 do m[i, i]← 0

4 for l← 2 to n � l is the chain length.

5 do for i← 1 to n− l + 1

6 do j ← i + l − 1

7 m[i, j]←∞
8 for k ← i to j − 1

9 do q ← m[i, k] + m[k + 1, j] + pi−1pkpj

10 if q < m[i, j]

11 then m[i, j]← q

12 s[i, j]← k

13 return m and s


