Randomization in Algorithms

- Randomization is a tool for designing good algorithms.
- Two kinds of algorithms
 - Las Vegas - always correct, running time is random.
 - Monte Carlo - may return incorrect answers, but running time is deterministic.
Hiring Problem

\[\text{Hire} \text{− Assistant}(n) \]

1. \(\text{best} = 0 \) \quad // \text{candidate 0 is a least-qualified dummy candidate}
2. \text{for } i = 1 \text{ to } n
3. \quad \text{interview candidate } i
4. \quad \text{if candidate } i \text{ is better than candidate } \text{best}
5. \quad \quad \text{best} = i
6. \quad \text{hire candidate } i

How many times is a new person hired?
A random variable X takes on values from some set, each with a certain probability.

Expected value: $E[X] = \sum_{\text{values}} x \Pr(X = x) \cdot x$

Example: rolling a die.
Expected number of hirings

- Assume that all orderings of candidates are equally likely.
- $n!$ orderings, $\pi_1, \pi_2, \ldots, \pi_n!$
- H is the total number of hirings.
- $h(\pi_i)$ is the number of hirings for permutation π_i.

$$E[H] = \sum_{\pi_i} \frac{1}{n!} h(\pi_i)$$

How do we compute $E[H]$?
Indicator random variables

- Let A be an event.
- The indicator variable $I\{A\}$ is defined by:

$$I\{A\} = \begin{cases}
1 & \text{if } A \text{ occurs} \\
0 & \text{if } A \text{ does not occur}
\end{cases} .$$ \hfill (1)

What is the expected number of heads when I flip a coin?
- Let Y be a random variable that denotes heads or tails.
- Let X_H be the i.r.v. that counts the number of heads.

$$X_H = I\{Y \text{ is heads}\} = \begin{cases}
1 & \text{if } Y \text{ is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_H] = \Pr(X_H = 1) \cdot 1 + \Pr(X_H = 0) \cdot 0 = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$$
Linearity of Expectation

Let X and Y be two random variables

\[E[X + Y] = E[X] + E[Y] \]

Linearity of expectation holds even if X and Y are dependent.
What is $E[\text{number of heads}]$ when you flip n coins.

Different events are:
- 0 heads
- 1 head
- 2 heads
- 3 heads
- ...

$$E[\text{number of heads}] = \sum_{i=0}^{n} \Pr(\ i\ \text{heads in n flips}) \cdot i$$

Complicated calculation

Is there another way?
Use indicator random variables

- Divide events not by number of heads overall, but by heads in ith flip.
- Let X_i be the indicator random variable associated with the event in which the ith flip comes up heads:
 $$X_i = I\{\text{the } i\text{th flip results in the event } H\}.$$
- Let X be the random variable denoting the total number of heads in the n coin flips.
 $$X = \sum_{i=1}^{n} X_i .$$
- We take the expectation of both sides
 $$E[X] = E\left[\sum_{i=1}^{n} X_i \right].$$
 $$E[X] = E\left[\sum_{i=1}^{n} X_i \right]$$
 $$= \sum_{i=1}^{n} E[X_i]$$
 $$= \sum_{i=1}^{n} 1/2$$
 $$= n/2 .$$
Hiring

- Divide events not by number of heads overall, but by heads in \(i \)th flip.
- Let \(X_i \) be the indicator random variable associated with the event in which the \(i \)th person is hired
 \[X_i = I\{\text{the } i\text{th person is hired}\} \]
- Let \(X \) be the random variable denoting the total number of people hired.
 \[X = \sum_{i=1}^{n} X_i \]
- We take the expectation of both sides \(E[X] = E[\sum_{i=1}^{n} X_i] \).

\[
E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \Pr(X_i = 1)
\]

What is \(\Pr(X_i) = 1 \)?
Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the \(n! \) possible permutations are equally likely.

Randomize-In-Place\((A) \)

1. \(n = \text{length}[A] \)
2. for \(i = 1 \) to \(n \)
3. swap \(A[i] \leftrightarrow A[\text{RANDOM}(i, n)] \)

Lemma Procedure **Randomize-In-Place** computes a uniform random permutation.

Def Given a set of \(n \) elements, a \(k \)-permutation is a sequence containing \(k \) of the \(n \) elements.

There are \(n!/(n-k)! \) possible \(k \)-permutations of \(n \) elements.
Proof via Loop invariant

We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 2–3, for each possible $(i-1)$-permutation, the subarray $A[1..i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/n!$.
Initialization

Randomize-In-Place(A)

1. \(n = \text{length}[A] \)
2. for \(i = 1 \) to \(n \)
3. \(\text{swap } A[i] \leftrightarrow A[\text{Random}(i, n)] \)

Just prior to the \(i \)th iteration of the for loop of lines 2–3, for each possible \((i-1)\)-permutation, the subarray \(A[1..i-1] \) contains this \((i-1)\)-permutation with probability \((n - i + 1)!/n! \).

Initialization Consider the situation just before the first loop iteration, so that \(i = 1 \). The loop invariant says that for each possible 0-permutation, the subarray \(A[1..0] \) contains this 0-permutation with probability \((n - i + 1)!/n! = n!/n! = 1 \). The subarray \(A[1..0] \) is an empty subarray, and a 0-permutation has no elements. Thus, \(A[1..0] \) contains any 0-permutation with probability 1, and the loop invariant holds prior to the first iteration.
Maintenance

Randomize-In-Place(*A*)

1. \(n = \text{length}[A] \)
2. for \(i = 1 \) to \(n \)
3. swap \(A[i] \leftrightarrow A[\text{Random}(i, n)] \)

Just prior to the \(i \)th iteration of the for loop of lines 2–3, for each possible \((i-1)\)-permutation, the subarray \(A[1..i-1] \) contains this \((i-1)\)-permutation with probability \((n - i + 1)!/n!\).

Maintenance We assume that just before the \((i-1)\)st iteration, each possible \((i-1)\)-permutation appears in the subarray \(A[1..i-1] \) with probability \((n - i + 1)!/n!\), and we will show that after the \(i \)th iteration, each possible \(i \)-permutation appears in the subarray \(A[1..i] \) with probability \((n - i)!/n!\). Incrementing \(i \) for the next iteration will then maintain the loop invariant.
Let us examine the ith iteration. Consider a particular i-permutation, and denote the elements in it by $<x_1, x_2, \ldots, x_i>$. This permutation consists of an $(i - 1)$-permutation $<x_1, \ldots, x_{i-1}>$ followed by the value x_i that the algorithm places in $A[i]$. Let E_1 denote the event in which the first $i - 1$ iterations have created the particular $(i - 1)$-permutation $<x_1, \ldots, x_{i-1}>$ in $A[1..i-1]$. By the loop invariant, $\Pr(E_1) = (n - i + 1)!/n!$. Let E_2 be the event that ith iteration puts x_i in position $A[i]$. The i-permutation $<x_1, \ldots, x_i>$ is formed in $A[1..i]$ precisely when both E_1 and E_2 occur, and so we wish to compute $\Pr(E_2 \cap E_1)$. Using equation ??, we have

$$\Pr(E_2 \cap E_1) = \Pr(E_2 \mid E_1)\Pr(E_1).$$

The probability $\Pr(E_2 \mid E_1)$ equals $1/(n - i + 1)$ because in line 3 the algorithm chooses x_i randomly from the $n - i + 1$ values in positions $A[i..n]$. Thus, we have

$$\Pr(E_2 \cap E_1) = \Pr(E_2 \mid E_1)\Pr(E_1)$$

$$= \frac{1}{n - i + 1} \cdot \frac{(n - i + 1)!}{n!}$$

$$= \frac{(n - i)!}{n!}. $$
Termination

Randomize-In-Place(A)

1. $n = \text{length}[A]$
2. for $i = 1$ to n
3. swap $A[i] \leftrightarrow A[\text{Random}(i, n)]$

Just prior to the ith iteration of the for loop of lines 2–3, for each possible $(i - 1)$-permutation, the subarray $A[1..i-1]$ contains this $(i - 1)$-permutation with probability $(n - i + 1)!/n!$.

Termination At termination, $i = n + 1$, and we have that the subarray $A[1..n]$ is a given n-permutation with probability $(n - n)!/n! = 1/n!$.