- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range  $1 \dots k$ .

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range  $1 \dots k$ .

Idea For each A[i] compute the number of elements less than or equal to A[i] use that to compute position.

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range  $1 \dots k$ .

Idea For each A[i] compute the number of elements less than or equal to A[i], and use that to compute position.

- Array A[1...n] holds input
- Array C[1...k] C[j] holds number of elements of A less than or equal to j

### **Example:**

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range  $1 \dots k$ .

Idea For each A[i] compute the number of elements less than or equal to A[i] and use that to compute position.

- Array A[1...n] holds input
- Array C[1...k] C[j] holds number of elements of A less than or equal to j

#### **Example:**

#### Questions

• How do we compute C?

## Counting Sort

```
Counting - Sort(A, B, k)
    for i = 0 to k
        C[i] = 0
   for j = 1 to length[A]
         C[A[j]] = C[A[j]] + 1
    /\!\!/ C[i] now contains the number of elements equal to i.
    for i = 1 to k
 6
         C[i] = C[i] + C[i-1]
 7
   /\!\!/ C[i] now contains the number of elements less than or equal to i.
    for j = length[A] downto 1
         B[C[A[j]]] = A[j]
10
         C[A[j]] = C[A[j]] - 1
11
```

# Analysis

- Running Time O(n+k)
- No Comparisons
- Doesn't work on all data
- Good when k is small
- When k = O(n) we have run-time O(n+k) = O(n)
- Examples?

- We want to sort  $x_1, x_2, ..., x_n$
- If  $x_i > x_j$  then put  $x_i$  after  $x_j$

- We want to sort  $x_1, x_2, ..., x_n$
- If  $x_i > x_j$  then put  $x_i$  after  $x_j$
- But what if  $x_i = x_j$

- We want to sort  $x_1, x_2, ..., x_n$
- If  $x_i > x_j$  then put  $x_i$  after  $x_j$
- But what if  $x_i = x_j$

Stable Sorting: if i < j and  $x_i = x_j$  then put  $x_i$  before  $x_j$ 

- We want to sort  $x_1, x_2, ..., x_n$
- If  $x_i > x_j$  then put  $x_j$  after  $x_i$
- But what if  $x_i = x_j$

Stable Sorting: if i < j and  $x_i = x_j$  then put  $x_i$  before  $x_j$ 

Question: Is counting sort stable?

Question: Should we use counting sort to sort everyone in this class by initials?

Question: Should we use counting sort to sort everyone in this class by initials?

- n = 150
- $k = 27^2 > 700$
- Running time is 150 + 700 = 850

Question: Should we use counting sort to sort everyone in this class by initials?

- n = 150
- $k = 27^2 > 700$
- Running time is 150 + 700 = 850

### Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

Question: Should we use counting sort to sort everyone in this class by initials?

- n = 150
- $k = 27^2 > 700$
- Running time is 150 + 700 = 850

#### Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

### Analysis

- Sorting a single letter: 150 + 27 < 200
- Total running time: 2(150 + 27) < 400

## Radix Sort

```
Radix-Sort(A,d)
```

- 1 for i = 1 to d
- 2 use a stable sort to sort array A on digit i

### Example

| 379 | STABLE SORT   | 912 | STABLE SORT   | 802 | STABLE SORT   | 258 |
|-----|---------------|-----|---------------|-----|---------------|-----|
| 912 | $\Rightarrow$ | 802 | $\Rightarrow$ | 803 | $\Rightarrow$ | 259 |
| 258 |               | 823 |               | 804 |               | 269 |
| 269 |               | 803 |               | 912 |               | 279 |
| 823 |               | 804 |               | 823 |               | 379 |
| 259 |               | 258 |               | 258 |               | 802 |
| 803 |               | 269 |               | 259 |               | 803 |
| 279 |               | 259 |               | 269 |               | 804 |
| 804 |               | 379 |               | 379 |               | 823 |
| 802 |               | 279 |               | 279 |               | 912 |
|     |               |     |               |     |               |     |

### Radix Sort Correctness

```
Radix - Sort(A, d)
1 for i = 1 to d
2 use a stable sort to sort array A on digit i
```

Loop Invariant: After the ith iteration of the loop, the elements are sorted by their last i digits.

### Radix Sort Correctness

```
Radix - Sort(A, d)
1 for i = 1 to d
2 use a stable sort to sort array A on digit i
```

Loop Invariant: After the ith iteration of the loop, the elements are sorted by their last i digits.

### Inductive Step:

- Assume the invariant holds after i-1 iterations
- ullet Need to prove that it holds after i iterations

 $\bullet$  *n* elements

- $\bullet$  *n* elements
- $\bullet$  All elements have d digits
  - Initials: d = 2
  - **SSN:** d = 9
  - Dictionary Words: d = 30

- $\bullet$  *n* elements
- $\bullet$  All elements have d digits
  - Initials: d = 2
  - **SSN**: d = 9
  - Dictionary Words: d = 30
- Digits are in base b
  - Numbers: b = 10
  - Words: b = 27
  - UNI (letter/number): b = 37

- n elements
  All elements have d digits
  - Initials: d = 2
  - **SSN:** d = 9
  - Dictionary Words: d = 30
- $\bullet$  Digits are in base b
  - Numbers: b = 10
  - Words: b = 27
  - UNI (letter/number): b = 37

Radix Sort Running Time: O(d(n+b))

- $\bullet$  *n* elements
- All elements have *d* digits
  - Initials: d=2
  - **SSN**: d = 9
  - Dictionary Words: d = 30
- $\bullet$  Digits are in base b
  - Numbers: b = 10
  - Words: b = 27
  - UNI (letter/number): b = 37

Radix Sort Running Time: O(d(n+b))

Counting Sort Running Time:  $O(n+k) = O(n+b^d)$ 

Setup: Sort everyone in columbia by UNI. Say n = 40,000

Setup: Sort everyone in columbia by UNI. Say n = 40,000

### Radix Sort:

- d = 7
- b = 37
- Running Time:  $d(n+b) = 7(40,000+37) \sim 280,000$

Setup: Sort everyone in columbia by UNI. Say n = 40,000

#### Radix Sort:

- d = 7
- b = 37
- Running Time:  $d(n+b) = 7(40,000+37) \sim 280,000$

### **Counting Sort:**

- UNI = 7-digit number in base 37.
- $k = b^d = 37^7 \sim 10^{11}$
- Running Time:  $n + k = 40,000 + 37^7 \sim 10^{11}$

Setup: Sort everyone in columbia by UNI. Say n = 40,000

#### Radix Sort:

- d = 7
- b = 37
- Running Time:  $d(n+b) = 7(40,000+37) \sim 280,000$

### **Counting Sort:**

- UNI = 7-digit number in base 37.
- $k = b^d = 37^7 \sim 10^{11}$
- Running Time:  $n + k = 40,000 + 37^7 \sim 10^{11}$

### Merge Sort

• Running Time:  $nlog(n) = 40,000 \cdot \log(40,000) \sim 600,000$