Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.
2 fori:=1to k
3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.
2 fori:=1to k
3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

e Worst case analysis. Each round, I might get n dollars, there are £k
rounds, so I receive at most nk dollars.

Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.
2 fori:=1to k
3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

e Worst case analysis. Each round, I might get n dollars, there are £k
rounds, so I receive at most nk dollars.

e Amortized lesson. Sometimes a standard worst case analysis is too
weak. It doesn’t take into account (worst-case) dependencies between
what happens at each step.

An example we have already seen

e Building a heap in heapsort.
— Each insert takes O(lgn) time.

— Insert n items
— Total of O(nlgn) time.
e Buildheap — While any one insert may take Ign time, when you do

a sequence of n of them, bottom up, you can argue that the whole
sequence takes O(n) time.

Amortized Analysis

Multipop(S, k)
1 while not STAcK-EMPTY(S) and k # 0

2 do Por(95)
3 k< k—1

Some Analysis

e Push — O(1) time
e Pop — O(1) time.
e Multipop(k) — O(k) time.

Analysis
e Each op takes O(k) time.
e i <n , so each op takes O(n) time

e n operations take O(n’) time.

Can you construct a sequence of n operations that take Q(n?) time?

The right approach

Claim Starting with an empty stack, any sequence of n Push, Pop, and
Multipop operations take O(n) time.

e We say that the amortized time per operation is O(n)/n = O(1) .
e 3 types of amortized analysis

— Agggretate Analysis
— Banker’s (charging scheme) method

— Physicist’s (potential function) method

Aggregate Analysis

e Call Pop - multipop(1)
e Let m(i) be the number of pops done in the i th multipop

e Let » be the number of pushes done overall.

Claim
Zm(z) <p
Anlysis
total time = pushes + time for all multipops
= p+Xmli)
< p+p
< 2n

Banker’s Method

e Each operation has a real cost ¢; and an amortized cost ¢; .

e The amortized costs as valid if :

¢ ¢
VO Y ¢ > Y c

1=1 1=1

Methodology
e Show that the amortized costs are valid
e Show that ! ¢ < X |, for some X .
e Conclude that the total cost is at most X .

Why is the conclusion valid?

((
¢ <> ¢ <X
-1 i=1

]

Important: Your work is to come up with the amortized costs and to
show that they are valid.

Banker’s Method for Multipop

Real Cost ¢; | Amortized cost ¢;

Push 1 2
Pop 1 0
Multipop(k) | k 0

Potential Function Method

e Let D, be the “state” of the system after the : th operation.

e Define a potential function &©(0D;) to be the potential associated with
state D, .

e The : th operation has a real cost of ¢;

e Define the amortized cost ¢; of the i th operation by

ézj = C; + CD(DL) — (I)(D,;_l)

Why are we bothering?

e The amortized costs give us a nicer way of analyzing operations of vary-
ing real cost (like multipop)

e We use the potential function to “smooth” out the difference

First, the math

Potential function

e Let D, be the “state” of the system after the : th operation.

e Define a potential function &©(0D;) to be the potential associated with
state D, .

e The : th operation has a real cost of ¢;

e Define the amortized cost ¢; of the i th operation by

ézj = C; + CD(DL) — (I)(D,;_l)

M=
9>

I
NE
o
+
iy
S

|
=
S

|

I
—_
~
Il
—_

Potential function

e Let D, be the “state” of the system after the : th operation.

e Define a potential function @©(0D;) to be the potential associated with
state D, .

e The : th operation has a real cost of ¢,

e Define the amortized cost ¢; of the i th operation by ¢; = ¢, + ¢(D;) — (D,)

e Summing, we have »!' ¢, =x" ¢, +d(D,) — D(Dy) .

Using this
e Suppose that ¢(D,) > (D) .
e Then ! ¢ >0 ¢
e Next suppose that we have an upper bound X on > ¢ .
e Putting it all together we have

/’7 A
2. C =D G
1=1 1=1

X >

Conclusion: X is an upper bound on the real cost.

Using this method

e Choose an appropriate potential function o
e Show that ®(D;) =0

e Show that ¢(D,) >0

e Given an upper bound of X on X ¢ .

® Declare victory and celebrate, secure in the knowledge that your real
cost for any n operations is upper bounded by X

Applying the Method to Multipop

e Choose ®(D;) to be the number of items on the stack after the i th
operation.

e Clearly,
— ®(Dy) =0 because initial stack is empty

— ®(D,) >0 because ¢ is always non-negative.

e Now let’s compute amortized cost of each operation.

Applying the Method to Multipop

e Choose ®(D;) to be the number of items on the stack after the i th
operation.

Push: @(DO — CI)(DZfO =1
So

MultiPop of k items: &(D;) — &(D;_1) = —k
So

Concluding

e For any operation ¢, < 2.
e So for any n operations, »! ¢ <2n .

e Concluding, this means that for any n operations, > ¢ <2n .

Binary Counter

Increment(A)

O CUL I W N =

1< 0
while ¢ < length[A] and Ali] =1
do Ali] + 0
11+ 1
if i < length[A]
then Ali] + 1

Table Insert

Table-Insert (7', z)
if size|T] =0
then allocate table[T]| with 1 slot
size[T] + 1
if num|T| = size[T)|
then allocate new-table with 2 - size[T)] slots
insert all items in table[T]| into new-table
free table|T
table[T] <— new-table
size|T| < 2 - size[T]
insert x into table|T]
num|T] < num|[T] + 1

© 00O Uik WhH

-
- O

A potential function for table insert

Real cost
. 1 if 72 —1 is a power of 2
‘|11 otherwise

Potential function
e A® should be constant for a normal insert

e AD should drop by about : for an expensive insert.

O(T;) = 2 num(T;) — size(T;)

Analysis

O(T;) = 2 num(T;) — size(T;)

Analysis Case 1: No table doubling (num; = num; | +1 , size; = size; 1)
¢ = ¢+ P — Dy

= 14 2num; — size; —(2 num;_; — size;_1)

= 1+ 2(num; — num,_1) — (size; — size;_1)

— 142(1) =0

= 3

Case 2: Table doubling (num; = num; 1 +1 , size; = 2% size; 1)

A

¢ = ¢+ P — D

= (1 + size;_1) + 2 num; — size; —(2 num,;_1 — size;_1)
= (1 + size;—1) + 2(num; — num,;_1) — (size; — size; 1)
= (1 + size;_1 +2(1) — (2 size;_1 — size;_1)

= 34 size;_1 — Siz€;_1

= 3

So any n operations take at most 3n time.

