
Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.

2 for i = 1to k

3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.

2 for i = 1to k

3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

• Worst case analysis. Each round, I might get n dollars, there are k

rounds, so I receive at most nk dollars.

Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.

2 for i = 1to k

3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

• Worst case analysis. Each round, I might get n dollars, there are k

rounds, so I receive at most nk dollars.

• Amortized lesson. Sometimes a standard worst case analysis is too

weak. It doesn’t take into account (worst-case) dependencies between

what happens at each step.

An example we have already seen

• Building a heap in heapsort.

– Each insert takes O(lg n) time.

– Insert n items

– Total of O(n lg n) time.

• Buildheap – While any one insert may take lg n time, when you do

a sequence of n of them, bottom up, you can argue that the whole

sequence takes O(n) time.

Amortized Analysis

Multipop(S, k)

1 while not Stack-Empty(S) and k 6= 0

2 do Pop(S)

3 k ← k − 1

Some Analysis

• Push – O(1) time

• Pop – O(1) time.

• Multipop(k) – O(k) time.

Analysis

• Each op takes O(k) time.

• k ≤ n , so each op takes O(n) time

• n operations take O(n2) time.

Can you construct a sequence of n operations that take Ω(n2) time?

The right approach

Claim Starting with an empty stack, any sequence of n Push, Pop, and

Multipop operations take O(n) time.

• We say that the amortized time per operation is O(n)/n = O(1) .

• 3 types of amortized analysis

– Agggretate Analysis

– Banker’s (charging scheme) method

– Physicist’s (potential function) method

Aggregate Analysis

• Call Pop - multipop(1)

• Let m(i) be the number of pops done in the i th multipop

• Let p be the number of pushes done overall.

Claim ∑
i
m(i) ≤ p

Anlysis

total time = pushes + time for all multipops

= p +
∑
i
m(i)

≤ p + p

= 2p

≤ 2n

Banker’s Method

• Each operation has a real cost ci and an amortized cost ĉi .

• The amortized costs as valid if :

∀` ∑̀
i=1

ĉi ≥
∑̀
i=1

ci.

Methodology

• Show that the amortized costs are valid

• Show that
∑`
i=1 ĉi ≤ X , for some X .

• Conclude that the total cost is at most X .

Why is the conclusion valid?

∑̀
i=1

ci ≤
∑̀
i=1

ĉi ≤ X.

Important: Your work is to come up with the amortized costs and to

show that they are valid.

Banker’s Method for Multipop

Real Cost ci Amortized cost ĉi
Push 1 2

Pop 1 0

Multipop(k) k 0

Potential Function Method

• Let Di be the “state” of the system after the i th operation.

• Define a potential function Φ(Di) to be the potential associated with

state Di .

• The i th operation has a real cost of ci

• Define the amortized cost ĉi of the i th operation by

ĉi = ci + Φ(Di)− Φ(Di−1)

Why are we bothering?

• The amortized costs give us a nicer way of analyzing operations of vary-

ing real cost (like multipop)

• We use the potential function to “smooth” out the difference

First, the math

Potential function

• Let Di be the “state” of the system after the i th operation.

• Define a potential function Φ(Di) to be the potential associated with

state Di .

• The i th operation has a real cost of ci

• Define the amortized cost ĉi of the i th operation by

ĉi = ci + Φ(Di)− Φ(Di−1)

n∑
i=1

ĉi =
n∑

i=1
(ci + Φ(Di)− Φ(Di−1))

=

 n∑
i=1

ci


+ (Φ(D1)− Φ(D0)) + (Φ(D2)− Φ(D1)) + . . . + (Φ(Dn−1)− Φ(Dn−2)) + (Φ(Dn)− Φ(Dn−1))

=
n∑

i=1
ci + Φ(Dn)− Φ(D0)

Potential function

• Let Di be the “state” of the system after the i th operation.

• Define a potential function Φ(Di) to be the potential associated with

state Di .

• The i th operation has a real cost of ci

• Define the amortized cost ĉi of the i th operation by ĉi = ci + Φ(Di)− Φ(Di−1)

• Summing, we have
∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) .

Using this

• Suppose that Φ(Dn) ≥ Φ(D0) .

• Then
∑n
i=1 ĉi ≥

∑n
i=1 ci

• Next suppose that we have an upper bound X on
∑n
i=1 ĉi .

• Putting it all together we have

X ≥
n∑

i=1
ĉi ≥

n∑
i=1

ci

Conclusion: X is an upper bound on the real cost.

Using this method

• Choose an appropriate potential function Φ

• Show that Φ(D0) = 0

• Show that Φ(Dn) ≥ 0

• Given an upper bound of X on
∑n
i=1 ĉi .

• Declare victory and celebrate, secure in the knowledge that your real

cost for any n operations is upper bounded by X

Applying the Method to Multipop

• Choose Φ(Di) to be the number of items on the stack after the i th

operation.

• Clearly,

– Φ(D0) = 0 because initial stack is empty

– Φ(Dn) ≥ 0 because Φ is always non-negative.

• Now let’s compute amortized cost of each operation.

Applying the Method to Multipop

• Choose Φ(Di) to be the number of items on the stack after the i th

operation.

Push: Φ(Di)− Φ(Di−1) = 1

So

ĉi = ci + Φ(Di)− Φ(Di−1) = 1 + 1 = 2

Pop: Φ(Di)− Φ(Di−1) = −1

So

ĉi = ci + Φ(Di)− Φ(Di−1) = 1− 1 = 0

MultiPop of k items: Φ(Di)− Φ(Di−1) = −k
So

ĉi = ci + Φ(Di)− Φ(Di−1) = k − k = 0

Concluding

• For any operation ĉi ≤ 2 .

• So for any n operations,
∑n
i=1 ĉi ≤ 2n .

• Concluding, this means that for any n operations,
∑n
i=1 ci ≤ 2n .

Binary Counter

Increment(A)

1 i← 0

2 while i < length[A] and A[i] = 1

3 do A[i]← 0

4 i← i + 1

5 if i < length[A]

6 then A[i]← 1

Table Insert

Table-Insert(T, x)

1 if size[T] = 0

2 then allocate table[T] with 1 slot

3 size[T]← 1

4 if num[T] = size[T]

5 then allocate new -table with 2 · size[T] slots

6 insert all items in table[T] into new -table

7 free table[T]

8 table[T]← new -table

9 size[T]← 2 · size[T]

10 insert x into table[T]

11 num[T]← num[T] + 1

A potential function for table insert

Real cost

ci =

 i if i− 1 is a power of 2

1 otherwise

Potential function

• ∆Φ should be constant for a normal insert

• ∆Φ should drop by about i for an expensive insert.

Φ(Ti) = 2 num(Ti)− size(Ti)

Analysis

Φ(Ti) = 2 num(Ti)− size(Ti)

Analysis Case 1: No table doubling (num i = num i−1 +1 , size i = size i−1)

ĉi = ci + Φi − Φi−1

= 1 + 2 num i− size i−(2 num i−1− size i−1)

= 1 + 2(num i− num i−1)− (sizei − size i−1)

= 1 + 2(1)− 0

= 3

Case 2: Table doubling (num i = num i−1 +1 , size i = 2 ∗ size i−1)

ĉi = ci + Φi − Φi−1

= (1 + size i−1) + 2 num i− size i−(2 num i−1− size i−1)

= (1 + size i−1) + 2(num i− num i−1)− (sizei − size i−1)

= (1 + size i−1 +2(1)− (2 size i−1− size i−1)

= 3 + size i−1− size i−1

= 3

So any n operations take at most 3n time.

