All Pairs Shortest Paths

e Input: weighted, directed graph G = (V, F), with weight function w :
E — R.

e The weight of path p =< vy, v1,...,v, > is the sum of the weights of its

constituent edges:
k
w(p) = ;w(vi—lavz’) :

e The shortest-path weight from u to v is

d(u,v) ={

min{w(p)} if there is a path p from u to v ,
00 otherwise .

e A shortest path from vertex u to vertex v is then defined as any path
p with weight w(p) = d(u, v).

All Pairs Shortest Paths: Compute d(u,v) the shortest path distance from
u to v for all pairs of vertices u and wv.

Example

Solution

Approach 1

Run Single source shortest paths V' times
e O(V*E) for general graphs
e O(VE + V?logV) for graphs with non-negative edge weights

Other approaches : Share information between the various computations

Floyd-Warshall, Dynamic Programming

o Let dz(f) be the weight of a shortest path from vertex i to vertex j for
which all intermediate vertices are in the set {1,2,... k}.

® When £ = (0, a path from vertex ¢ to vertex j; with no intermediate

vertex numbered higher than 0 has no intermediate vertices at all, hence
40

= min <d<k_1>,d§-’,§_1) +d§j§‘”) ifh>1. (1)

ij

Floyd-Warshall(IW)

1
2
3
4
5]
6
7

n < rows|W]|
DO — W
for k< 1 ton
do for i <1 ton
do for j < 1ton

do dgf) < min (d(k_l), d§’,§‘” + d,g?”)

tj
return D™

Running time O(V?)

Example

15
12

3

0

2 =4 8

12

0

15
12

0

16

Another Algorithm

RESET ALL DEFINITIONS OF D.
e Let w;; be the length of edge ij
e Let Wi; = 0

e Let d; be the shortest path from i to j using m or fewer edges
1
d;; = wij

d”’ = min{d” ', min d7 '+ w.;
1] { 1] 71§k§n,k‘7éj ik /fj}

Combining these two, we get

d” = min {d7 ' + wy;
1] 1§k§n{ 1k + k]}

This would give an O(V*) algorithm

Using matrix multiplication analogy

Note the similarity of

m . m—1 .
dij = 12}51271{0[““ + wy; }

with matrix multiplication:

Cij = Sumlgkgn{aik : bkj}
Make the following substitutions (which have the right algebraic proper-
ties:

suim

A

L4l
+

br.;
C

1
,
S

But we can execute W be repeated squaring and get O(V3logV) time.

