Greedy Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods (s_i, f_i) are: $$(1,4), (3,5), (0,6), (5,7), (3,8), (5,9), (6,10), (8,11), (8,12), (2,13), (12,14)$$ Which ones should we schedule? # Greedy Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods (s_i, f_i) are: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #### Code # Proving a Greedy Algorithm is Optimal #### Two components: - 1. Optimal substructure - 2. Greedy Choice Property: There exists an optimal solution that is consistent with the greedy choice made in the first step of the algorithm. ## Optimal Substructure ullet Let c[i,j] be the number of activities scheduled from time i to time j $$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,s_k] + c[f_k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$ (1) ### **Greedy Choice** #### **Greedy Choice Property** - 1. Let S_k be a nonempty subproblem containing the set of activities that finish after activity a_k . - 2. Let a_m be an activity in S_k with the earliest finish time. - 3. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k . #### **Proof** - Let A_k be a maximum-size subset of mutually compatible activities in S_k , - let a_j be the activity in A_k with the earliest finish time. - If $a_j = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k . - If $a_j \neq a_m$, let the set $A'_k = A_k \{a_j\} \cup \{a_m\}$ - The activities in A'_k are disjoint, because - the activities in A_k are disjoint, - $-a_j$ is the first activity in A_k to finish, - $-f_m \leq f_j$. - Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m . # Procedure for Designing a Greedy Algorithm - 1. Identify optimal substructure - 2. Cast the problem as a greedy algorithm with the greedy choice property - 3. Write a simple iterative algorithm # Robbery - ullet I want to rob a house and I have a knapsack which holds B pounds of stuff - I want to fill the knapsack with the most profitable items | item | 1 | 2 | 3 | |--------------|----|----------|-----| | weight | 10 | 20 | 30 | | value | 60 | 100 | 120 | | value/weight | 6 | 5 | 4 | #### Two variants - integral knapsack: Take an item or leave it - fractional knapsack: Can take a fraction of an item (infinitely divisible) # Fractional vs. Integral Knapsack - Both fractional and integral knapsack have optimal substructure. - Only fractional knapsack has the greedy choice property. ### Fractional Knapsack Greedy Choice Property: Let j be the item with maximum v_i/w_i . Then there exists an optimal solution in which you take as much of item j as possible. #### Proof - Suppose fpoc, that there exists an optimal solution in you didn't take as much of item j as possible. - If the knapsack is not full, add some more of item j, and you have a higher value solution. Contradiction - We thus assume the knapsack is full. - There must exist some item $k \neq j$ with $\frac{v_k}{w_k} < \frac{v_j}{w_j}$ that is in the knapsack. - \bullet We also must have that not all of j is in the knapsack. - We can therefore take a piece of k, with ϵ weight, out of the knapsack, and put a piece of j with ϵ weight in. - This increases the knapsack's value by $$\epsilon \frac{v_j}{w_j} - \epsilon \frac{v_k}{w_k} = \epsilon \left(\frac{v_j}{w_j} - \frac{v_k}{w_k} \right) > 0$$ Contradition to the original solution being optimal. # Algorithm - 1. Sort items by v_j/w_j , renumber. - **2.** For i = 1 to n - \bullet Add as much of item i as possible Question Why does this fail for integer knapsack? # Dynamic Programming Algorithm - Let A[x, W] be the maximum value obtainable from items $1, \ldots, x$ using at most W weight - To compute A[x, W], either - 1. item x is in the best solution - 2. item x is not. ## Dynamic Programming Algorithm - Let A[x, W] be the maximum value obtainable from items $1, \ldots, x$ using at most W weight - To compute A[x, W], either - 1. item x is in the best solution include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most W. - 2. item x is not then just use the best solution from $1, \ldots, x-1$ that has weight at most W. ## Dynamic Programming Algorithm - Let A[x, W] be the maximum value obtainable from items $1, \ldots, x$ using at most W weight - To compute A[x, W], either - 1. item x is in the best solution include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most W. - 2. item x is not then just use the best solution from $1, \ldots, x-1$ that has weight at most W. $$A[x, W] = \max\{A[x - 1, W - w_i] + v_i, A[x - 1, W]\}$$