
Greedy

Consider a set of requests for a room. Only one person can reserve the

room at a time, and you want to allow the maximum number of requests.

The requests for periods (si, fi) are:

(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)

Which ones should we schedule?

Greedy

Consider a set of requests for a room. Only one person can reserve the

room at a time, and you want to allow the maximum number of requests.

The requests for periods (si, fi) are:

(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)

Which ones should we schedule?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Code

1 Sort by finishing time, renumber with 1 having earliest finishing time

2 Output 1

3 last = f1
4 for i = 2 to n

5 do if (si ≥ last)

6 then Output i

7 last = fi

Proving a Greedy Algorithm is Optimal

Two components:

1. Optimal substructure

2. Greedy Choice Property: There exists an optimal solution that is con-

sistent with the greedy choice made in the first step of the algorithm.

Optimal Substructure

• Let c[i, j] be the number of activities scheduled from time i to time j

c[i, j] =


0 if Sij = ∅ ,
maxak∈Sij{c[i, sk] + c[fk, j] + 1} if Sij 6= ∅

. (1)

Greedy Choice

Greedy Choice Property

1. Let Sk be a nonempty subproblem containing the set of activities that

finish after activity ak.

2. Let am be an activity in Sk with the earliest finish time.

3. Then am is included in some maximum-size subset of mutually compat-

ible activities of Sk.

Proof

• Let Ak be a maximum-size subset of mutually compatible activities in Sk,

• let aj be the activity in Ak with the earliest finish time.

• If aj = am, we are done, since we have shown that am is in some maximum-

size subset of mutually compatible activities of Sk.

• If aj 6= am, let the set A′k = Ak − {aj} ∪ {am}
• The activities in A′k are disjoint, because

– the activities in Ak are disjoint,

– aj is the first activity in Ak to finish,

– fm ≤ fj.

• Since |A′k| = |Ak|, we conclude that A′k is a maximum-size subset of mu-

tually compatible activities of Sk, and it includes am.

Procedure for Designing a Greedy Algorithm

1. Identify optimal substructure

2. Cast the problem as a greedy algorithm with the greedy choice property

3. Write a simple iterative algorithm

Robbery

• I want to rob a house and I have a knapsack which holds B pounds of

stuff

• I want to fill the knapsack with the most profitable items

item 1 2 3

weight 10 20 30

value 60 100 120

value/weight 6 5 4

Two variants

• integral knapsack: Take an item or leave it

• fractional knapsack: Can take a fraction of an item (infinitely divisible)

Fractional vs. Integral Knapsack

• Both fractional and integral knapsack have optimal substructure.

• Only fractional knapsack has the greedy choice property.

Fractional Knapsack

Greedy Choice Property: Let j be the item with maximum vi/wi. Then

there exists an optimal solution in which you take as much of item j as

possible.

Proof

• Suppose fpoc, that there exists an optimal solution in you didn’t take

as much of item j as possible.

• If the knapsack is not full, add some more of item j, and you have a

higher value solution. Contradiction

• We thus assume the knapsack is full.

• There must exist some item k 6= j with vk
wk
<

vj
wj

that is in the knapsack.

• We also must have that not all of j is in the knapsack.

• We can therefore take a piece of k, with ε weight, out of the knapsack,

and put a piece of j with ε weight in.

• This increases the knapsack’s value by

ε
vj
wj
− ε vk

wk
= ε

 vj
wj
− vk
wk

 > 0

Contradition to the original solution being optimal.

Algorithm

1. Sort items by vj/wj, renumber.

2. For i = 1 to n

• Add as much of item i as possible

Question Why does this fail for integer knapsack?

Dynamic Programming Algorithm

• Let A[x,W] be the maximum value obtainable from items 1, . . . , x using

at most W weight

• To compute A[x,W] , either

1. item x is in the best solution

2. item x is not.

Dynamic Programming Algorithm

• Let A[x,W] be the maximum value obtainable from items 1, . . . , x using

at most W weight

• To compute A[x,W] , either

1. item x is in the best solution – include x , along with the best

solution from 1, . . . , x− 1 that, along with x has weight at most W

.

2. item x is not – then just use the best solution from 1, . . . , x− 1 that

has weight at most W .

Dynamic Programming Algorithm

• Let A[x,W] be the maximum value obtainable from items 1, . . . , x using

at most W weight

• To compute A[x,W] , either

1. item x is in the best solution – include x , along with the best

solution from 1, . . . , x− 1 that, along with x has weight at most W

.

2. item x is not – then just use the best solution from 1, . . . , x− 1 that

has weight at most W .

A[x,W] = max{A[x− 1,W − wi] + vi, A[x− 1,W]}

