Greedy

Consider a set of requests for a room. Only one person can reserve the
room at a time, and you want to allow the maximum number of requests.
The requests for periods (s;, f;) are:

(1,4),(3,5), (0,6), (5,7), (3,8), (5,9), (6,10), (8, 11), (8, 12), (2, 13), (12, 14)

Which ones should we schedule?

Greedy

Consider a set of requests for a room. Only one person can reserve the
room at a time, and you want to allow the maximum number of requests.
The requests for periods (s;, f;) are:

(1,4),(3,5), (0,6), (5,7), (3,8), (5,9), (6,10), (8, 11), (8, 12), (2, 13), (12, 14)

Which ones should we schedule?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

O Ok W=

Code

Sort by finishing time, renumber with 1 having earliest finishing time
Output 1
last = fi
fori=2ton
do if (s; > last)
then Output ¢
last = f;

Proving a Greedy Algorithm is Optimal

Two components:
1. Optimal substructure

2. Greedy Choice Property: There exists an optimal solution that is con-
sistent with the greedy choice made in the first step of the algorithm.

Optimal Substructure

e Let c|i, j| be the number of activities scheduled from time i to time j

0 if S, =0,
maXakESij{C[i, Sk] + C[fk,]] + 1} if S@j =+ 0

i) |)

Greedy Choice

Greedy Choice Property

1. Let S, be a nonempty subproblem containing the set of activities that
finish after activity ay.

2. Let a,, be an activity in S; with the earliest finish time.

3. Then a,, is included in some maximume-size subset of mutually compat-
ible activities of §;.

Proof
e Let A, be a maximum-size subset of mutually compatible activities in .5},
e let a; be the activity in A; with the earliest finish time.

e Ifa; = a,,, we are done, since we have shown that q,, is in some maximum-
size subset of mutually compatible activities of 5.

o If a; # a,, let the set A, = A, — {a;} U {an}
e The activities in A} are disjoint, because
— the activities in A; are disjoint,
— a; is the first activity in A; to finish,
— fm < f5.

e Since |A}| = |Ax|, we conclude that A} is a maximum-size subset of mu-
tually compatible activities of S;, and it includes a,,.

Procedure for Designing a Greedy Algorithm

1. Identify optimal substructure
2. Cast the problem as a greedy algorithm with the greedy choice property

3. Write a simple iterative algorithm

Robbery

e I want to rob a house and I have a knapsack which holds B pounds of
stuff

e I want to fill the knapsack with the most profitable items

item 1 2 3
weight 10 20 30
value 60 100 120
value/weight |6 5 4

Two variants
e integral knapsack: Take an item or leave it

e fractional knapsack: Can take a fraction of an item (infinitely divisible)

Fractional vs. Integral Knapsack

e Both fractional and integral knapsack have optimal substructure.

e Only fractional knapsack has the greedy choice property.

Fractional Knapsack

Greedy Choice Property: Let j be the item with maximum v;/w;. Then
there exists an optimal solution in which you take as much of item ; as
possible.

Proof

e Suppose fpoc, that there exists an optimal solution in you didn’t take
as much of item j as possible.

e If the knapsack is not full, add some more of item j, and you have a
higher value solution. Contradiction

e We thus assume the knapsack is full.

® There must exist some item k # j with Z—i < Z}—J that is in the knapsack.
J

e We also must have that not all of j is in the knapsack.

e We can therefore take a piece of k, with ¢ weight, out of the knapsack,
and put a piece of j with ¢ weight in.

e This increases the knapsack’s value by

(o Vi V; Vi
GJ—E_E(j—> > 0
1 W Wi

Contradition to the original solution being optimal.

Algorithm

1. Sort items by v;/w,;, renumber.
2. Fort=1ton

e Add as much of item 7 as possible

Question Why does this fail for integer knapsack?

Dynamic Programming Algorithm

e Let Al[z, V] be the maximum value obtainable from items 1,... = using
at most I weight

e To compute Az, V] , either

1.item 2z 1is in the best solution

2. item 2z 1S not.

Dynamic Programming Algorithm

e Let Al[z, V] be the maximum value obtainable from items 1,... = using
at most I weight

e To compute Az, V] , either

1.item 2 is in the best solution — include =z , along with the best
solution from 1,... .2 — 1 that, along with = has weight at most I/

2. item 2 is not — then just use the best solution from 1,...,r — 1 that
has weight at most 11/ .

Dynamic Programming Algorithm

e Let Al[z, V] be the maximum value obtainable from items 1,... = using
at most I weight

e To compute Az, V] , either

1.item 2 is in the best solution — include =z , along with the best
solution from 1,... .2 — 1 that, along with = has weight at most I/

2. item 2 is not — then just use the best solution from 1,...,r — 1 that
has weight at most 11/ .

Alz, W] = max{Alx — 1, W —w;] +v;, Alx — 1, W]}

