
NP-Completeness

Goal: We want some way to classify problems that are hard to solve, i.e.

problems for which we can not find polynomial time algorithms.

For many interesting problems

• we cannot find a polynomial time algorithm

• we cannot prove that no polynomial time algorithm exists

• the best we can do is formalize a class of NP-complete problems that

either all have polynomial time algorithms or none have polynomial time

algorithms

NP-completeness arises in many fields including

• biology

• chemistry

• economics

• physics

• engineering

• sports

• etc.



Goal in class:

To learn how to prove that problems are NP-complete.

We need a formalism for proving problems hard.



Turing Machine (simplified description)

A Turing Machine has

• Finite state control

• Infinite tape (each square can hold 0, 1, $, or be blank.

• Read-Write head

Each step of the finite state control is a function

f (current state, tape symbol)→ (new state, symbol to write,movement of head)



Example

Program to test if a binary number is even. Input is $ terminated.

Output is written immediately after $, 1 for yes, 0 for no.

• Read until $ (state q0)

• Back up, check last digit (state q1)

• if even, write a 1 (states q2, q3, qF)

• if odd, write a 0 (states q4, q5, qF)

Here is a program. Each cell is (new state, write symbol move)
state input 0 input 1 input $

(q0) (q0,−, R) (q0,−, R) (q1,−, L)

(q1) (q2,−, R) (q4,−, R) error

(q2) error error (q3,−, R)

(q3) (qF , 1,−) (qF , 1,−) (qF , 1,−)

(q4) error error (q5,−, R)

(q5) (qF , 0,−) (qF , 0,−) (qF , 0,−)

(qF ) halt halt halt

Church Turing Thesis The set of things that can be computed on a TM is

the same as the set of things that can be computed on any digital computer.



P

Definition Let P be defined as the set of problems that can be solved in

polynomial time on a TM (On an input of size n, they can be solved in

time O(nk) for some constant k)

Theorem P is the set of problems that can be solved in polynomial time

on the model of computation used in CSOR 4231 and on every modern

non-quantum digital computer.

Technicalities

• We assume a reasonable (binary) encoding of input

• Note that all computers are related by a polynomial time transforma-

tion. Think of this as a “compiler”

Further details

• We restrict attention to “yes-no” questions

• Shortest path is now “Given a graph G and a number b does the shortest

path from s to t have length at most b.

• We do not use the language framework from the book in class



Verification

Verification Given a problem X and a possible solution S, is S a solution

to X.

Example X is shortest paths and S is an s-t path in S that is claimed to

have length at most b, check whether the path really is of length at most b

Example X is sorting and S is an allegedly sorted list. Is the list really

sorted?

Claim Verification is no harder than solving a problem from scratch.

We write

Verification ≤ Solving

Def: NP is the set of problems that can be verified in polynomial time

Formally: Problem X with input of size n is in NP if there exists a

“certificate” y, |y| = poly(n) such that, using y, one can verify whether

a solution x is really a solution in polynomial time. (Think of y as the

“answer”)



Some problems

Longest Path Given a graph G, and number k is the longest simple path

from s to t of length ≥ k.

Satisfiability Given a formula Φ in CNF (conjunctive normal form), does

there exist a satisfying assignment to Φ, i.e. an assignment of the variables

that evaluates to true.



Big Question

P = NP ??

Is solving a problem no harder than verifying?

Don’t know answer. Instead we will identify “hardest” problems in NP.

If any of these are in P then all of NP is in P.

complexity

P

NP

NP
complete



NP-complete

Definition Problem X is NP-complete if

1. X ∈ NP

2. Y ≤ X ∀Y ∈ NP

Definition Y ≤ X means

• Y is polynomial time reducible to X, which means

there exists a polynomial time computable function f that maps inputs

to Y to inputs to X, such that

input y to problem Y returns “Yes” iff input f (y) to problem X returns

“Yes”

Informally Y ≤ X means that Y is “not much harder than” (“easier than”)

X



Theorem

If Y ≤ X then X ∈ P ⇒ Y ∈ P

Contrapositive

If Y ≤ X then Y 6∈ P ⇒ X 6∈ P



SAT

Theorem SAT is NP-complete

Proof idea: The turing machine program for any problem in NP can be

verified by a polynomial sized SAT instance that encodes that the input is

well formed and that each step follows legally from the next.

Implication We now have one NP-complete problem. We will now reduce

other problems to it.



Reductions

• If I want to show that X is easy, I show that in polynomial time I can

reduce X to Y, where I already know that Y is easy.

• If I want to show that X is hard, then I reduce Y to X, where I already

know that Y is hard.

• So if SAT ≤ X, then X is hard.



Showing X is NP-complete

To show that X is NP-complete, I show:

1. X ∈ NP

2. For some problem Z that I know to be NP-complete Z ≤ X



Showing X is NP-complete

To show that X is NP-complete, I show:

1. X ∈ NP

2. For some problem Z that I know to be NP-complete Z ≤ X

Expanded version: To show that X is NP-complete, I show:

1. X ∈ NP

2. Find a known NP-complete problem Z.

3. Describe f , which maps input z to Z to input f (z) to X.

4. Show that Z with input z returns “yes” iff X with input f (z) returns

“yes’

5. Show that f runs in polynomial time.



3SAT

3SAT is SAT with exactly 3 literals per clause

Example:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5)

Comments

• n variables, m clauses

• 3SAT is a special case of SAT

• If SAT is easy, then 3SAT must be easy

• IS SAT is hard, then ???

• 1-SAT is easy.

• 2-SAT is easy.



3SAT is NP-complete

Expanded version: To show that X is NP-complete, I show:

1. X ∈ NP

2. Find a known NP-complete problem Z.

3. Describe f , which maps input z to Z to input f (z) to X.

4. Show that Z with input z returns “yes” iff X with input f (z) returns

“yes’

5. Show that f runs in polynomial time.

1) 3SAT is in NP. becasue SAT is in NP and 3SAT is a special case of

SAT.

2) SAT

3,4, 5) Next slde..



Reduction

Approach We need to show how to convert an input to SAT into an input

to 3SAT, while preserving yes/no instances. We will give a clause by clause

conversion. Let k be the number of literals in a clause

Easy cases:

• k = 1 . x1 ⇒ (x1 ∨ x1 ∨ x1)

• k = 2 . (x1 ∨ x2)⇒ (x1 ∨ x1 ∨ x2)

• k = 3 . (x1 ∨ x2 ∨ x3)⇒ (x1 ∨ x2 ∨ x3)

Easy to verify that transformation preserves satisfiability



k=4

• Need to convert x1 ∨ x2 ∨ x3 ∨ x4 to a 3SAT expression.

• Will need more than one clause

First try:

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

Is this true for exactly the same settings as x1 ∨ x2 ∨ x3 ∨ x4 ?



k=4

• Need to convert x1 ∨ x2 ∨ x3 ∨ x4 to a 3SAT expression.

• Will need more than one clause

First try:

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

Is this true for exactly the same settings as x1 ∨ x2 ∨ x3 ∨ x4 ?

No: Consider

x1 = T

x2 = F

x3 = F

x4 = F

Lesson: Need additional variables



k=4

• Need to convert Φ = x1 ∨ x2 ∨ x3 ∨ x4 to a 3SAT expression.

• Will need more than one clause

• Will need extra variables

3SAT Expression:

Φ′ = (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ x4)

Claim: There is a setting of x1, x2, x3, x4 that makes Φ true iff there is a

setting of x1, x2, x3, x4, y1 that makes Φ′ true.



k=5

• Need to convert Φ = x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 to a 3SAT expression.

• Will need more than one clause

• Will need extra variables

3SAT Expression:

Φ′ = (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ (y2 ∨ x4 ∨ x5)

Claim: There is a setting of x1, x2, x3, x4, x5 that makes Φ true iff there is

a setting of x1, x2, x3, x4, x5, y1, y2 that makes Φ′ true.



General k

• Need to convert Φ = x1 ∨ x2 ∨ . . . ∨ xk to a 3SAT expression.

• Will need more than one clause

• Will need extra variables

3SAT Expression:

Φ′ = (x1 ∨ x2 ∨ y1)

∧ (y1 ∨ x3 ∨ y2)

∧ . . .

∧ (yi−2 ∨ xi ∨ yi−1)

∧ . . .

∧ (yk−4 ∨ xk−2 ∨ yk−3)

∧ (yk−3 ∨ xk−1 ∨ xk))

Claim: There is a setting of x1, x2, . . . , xk that makes Φ true iff there is a

setting of x1, x2, . . . , xk, y1, . . . , yk−3 that makes Φ′ true.



Recap

• Described f

• f is polynomial time

– A clause with k variables is mapped to k − 2 clauses of 3 variables

each.

– Clauses blow up by a factor of at most n

– Variables blow up by a factor of at most n

• We argued (clause by clause) that Φ is a yes instance to SAT iff Φ′ is

a yes instance to 3SAT.



Sanity Checks

• Why can’t we prove that 2SAT is NP-complete via this reduction?

• What does the reduction from 2SAT to 3SAT tell us?



Clique

Definition A k -clique is a set of k vertices with all
(k
2

)
edges between

them.

Clique Given a graph G = (V,E) and an integer k , does G have a k

-clique?



Clique

• G has a 4-clique

• G has no 5-clique.



Reduction

Goal We need to describe a function f that takes an instance Φ of 3SAT

and produces instances f (Φ) = (G, k) of k-clique such that Φ is satisfiable

iff f (Φ) has a k-clique.

Observation To make a 3SAT instance true, we need to make at least one

literal in each clause true Strategy:

• A node for each appearance of a literal (a literal is a variable or its

negation)

• An edge between literals that can be simultaneously true and in different

clauses

• A k-clique will be a set of literals, one per clause, that can all be true

simultaneously.

Example

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)



Proof

Claim Φ is satisfiable iff G has a k -clique.

Proof

( ⇒ ) If Φ is satisfiable, then there is a setting of the variables with at

least one literal per clause set to true. Let Z be such a set of literals.

This set Z cannot contain both x1 and xi , so in the graph G , the nodes

in Z have an edge between each pair and therefore form a k -clique.

(( ⇐ ) If G has a k -clique, the clque must consist of k nodes, and they

must be 1 per clause and must not have any pairs xi and xi . Therefore

you can set the corresponding literals to true and satisfy Φ



Reflections

• We have actually shown that a “special case” with nodes in groups of 3

of clique is NP-complete. But if a special case is hard, there can’t be a

general algorithm for clique.

• In the proof, the function f goes one way, from 3SAT to clique, but

the proof about yes instances has to go both ways.

• If the proof only went one way, it would be very easy (and incorrect)



Vertex Cover

Defintion Given a graph G = (V,E) and an integer k , a vertex cover

V ′ ⊆ V is a subset of the vertices such that for all edges (v, w) , at least

one of v and w is in V ′ . The vertex cover problem asks whether a

graph G has a vertex cover of size at most k .

Claim Vertex cover is NP-complete.

• Vertex cover is in NP

• We will reduce from clique.

• What is the relationship between vertex covers and cliques, i.e. what

does the vertex cover of a clique look like.



Reduction

Definition Given a graph G = (V,E) the complement G′ is the graph in

which edges are replaces by non-edges and vica versa.

Claim: G has a k -clique iff G′ has a vertex cover of size |V | − k .



Subset Sum

Definition Given a set of integers S = {s1, s2, . . . , sn} and a target value t

, is there a subset S ′ ⊆ S such that
∑
si∈S′ = t .

Example

S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344} t = 3754

Solution

S ′ = {1, 16, 64, 256, 1040, 1093, 1284}

Question What about t = 3755 ?



Reduction

Claim Vertex cover reduces to Subset Sum.

Idea 1: Look at the vertex edge adjacency matrix

v4	
  

v0	
  

v1	
  

v2	
  

v3	
  

e0	
  

e1	
  

e4	
  
e3	
  

e2	
  

e4 e3 e2 e1 e0
v0 0 0 1 0 1

v1 1 0 0 1 0

v2 1 1 0 0 0

v3 0 0 1 0 0

v4 0 1 0 1 1
We now have numbers!



Ideas

• A vertex cover is a subset R of rows, such that each column has at

least one 1 in a row of R .

• Maybe we can think of the rows as binary numbers, can we say some-

thing about the sum of the numbers in R .

• Example, R = {v1, v3, v4}
e4 e3 e2 e1 e0

v0 0 0 1 0 1

v1 1 0 0 1 0

v2 1 1 0 0 0

v3 0 0 1 0 0

v4 0 1 0 1 1

v1 + v3 + v4 1 1 1 2 1

• Sort of works:

– If every edge had exactly one endpoint in R , then the binary sum

would be 11111 , and we would choose t = 11111 .

• Problems:

– Edges can have one or two endpoints in R , which generates carries

in base 2.

– What should t be?

– We ignored k .



Fixes

Problems:

• Edges can have one or two endpoints in R , which generates carries in

base 2. Use base 4, and there won’t be any carries

• What should t be?

• We ignored k . Add an extra column to “count”. It will be the left-most

column, so carries don’t matter

vert e4 e3 e2 e1 e0
x0 1 0 0 1 0 1

x1 1 1 0 0 1 0

x2 1 1 1 0 0 0

x3 1 0 0 1 0 0

x4 1 0 1 0 1 1

xv1 + x3 + x4 (3) 1 1 1 2 1

• Still have a problem, what should t be?

• We will introduce dummy rows to allow us to say that columns should

sum to exactly 2 .



Final reduction

vert e4 e3 e2 e1 e0 number converted to base 10

x0 1 0 0 1 0 1 1041

x1 1 1 0 0 1 0 1284

x2 1 1 1 0 0 0 1344

x3 1 0 0 1 0 0 1044

x4 1 0 1 0 1 1 1093

y0 0 0 0 0 0 1 1

y1 0 0 0 0 1 0 4

y2 0 0 0 1 0 0 16

y3 0 0 1 0 0 0 64

y4 0 1 0 0 0 0 256

t (3) 2 2 2 2 2 3754

Claim G has a verex cover of size k iff the subset sum instance has a set

that sums to t.



Hamiltonian Cycle

Definition Given a graph G = (V,E) , is there cycle visiting each vertex

exactly once?

Fact Hamiltonian Cycle is NP-complete. See book for reduction.

Travelling Salesman Problem Given a graph G = (V,E) with edge weights

w and an integer B . Is there a Hamilonian Cycle C s.t.
∑
e∈C

w(e) ≤ B

.

Claim Travelling Salesman Problem is NP-complete, via a reduction from

Hamiltonian Cycle.



More NP-complete problems

Minimum Makespan Scheduling Given n jobs with processing times

p1, . . . , pn , and m identical machines and a number B . a schedule assigns

each job to a machine. If Ji is the set of jobs assigned to machine i , then

the load on machine i , Li =
∑
j∈Ji pj . The makespan of the schedule is

the maximum machine load M = maxiLi . You want to know if there exists

a schedule with makespan at most B .

3-partition Given a set of 3n numbers x1, . . . , x3n , with
∑3n
i=1 xi = nB , can

you partition the numbers into n groups, each with 3 elements and each

summing to B .


