
Randomization in Algorithms

• Randomization is a tool for designing good algorithms.

• Two kinds of algorithms

– Las Vegas - always correct, running time is random.

– Monte Carlo - may return incorrect answers, but running time is

deterministic.

Hiring Problem

Hire− Assistant(n)
1 best ← 0 � candidate 0 is a least-qualified dummy candidate

2 for i← 1 to n

3 do interview candidate i

4 if candidate i is better than candidate best

5 then best ← i

6 hire candidate i

How many times is a new person hired?

Analysis

• A random variable X takes on values from some set, each with a certain

probability.

• Expected value: E[X] =
∑
values x

Pr(X = x) · x

• Example: rolling a die.

Expected number of hirings

• Assume that all orderings of candidates are equally likely.

• n! orderings, π1, π2, . . . , πn!

• H is the total number of hirings.

• h(πi) is the number of hirings for permutation πi .

E[H] =
∑
πi

1

n!
h(πi)

How do we compute E[H]?

Indicator random variables

• Let A be an event.

• The indicator variable I{A} is defined by:

I{A} =
 1 if A occurs ,

0 if A does not occur .
(1)

What is the expected number of heads when I flip a coin?

• Let Y be a random variable that denotes heads or tails.

• Let XH be the i.r.v. that counts the number of heads.

XH = I{Y is heads} =
 1 if Y is heads

0 otherwise

E[XH] = Pr(XH = 1) · 1 + Pr(XH = 0) · 0

=
1

2
· 1 + 1

2
· 0

=
1

2

Linearity of Expectation

Let X and Y be two random variables

E[X + Y] = E[X] + E[Y]

Linearity of expectation holds even if X and Y are dependent.

n coin flips

• What is E[number of heads] when you flip n coins.

• Different events are:

– 0 heads

– 1 head

– 2 heads

– 3 heads

– . . .

E[number of heads] =
n∑
i=0

Pr(i heads in n flips) · i

• Complicated calculation

• Is there another way?

Use indicator random variables

• Divide events not by number of heads overall, but by heads in ith flip.

• Let Xi be the indicator random variable associated with the event in

which the ith flip comes up heads:

• Xi = I{the ith flip results in the event H}.

• Let X be the random variable denoting the total number of heads in

the n coin flips

• X =
∑n
i=1Xi .

• We take the expectation of both sides E[X] = E[
∑n
i=1Xi] .

E[X] = E[
n∑
i=1
Xi]

=
n∑
i=1
E[Xi]

=
n∑
i=1

1/2

= n/2 .

Hiring

• Divide events not by number of hires overall, but by hires in ith flip.

• Let Xi be the indicator random variable associated with the event in

which the ith person is hired

• Xi = I{the ith person is hired}.

• Let X be the random variable denoting the total number of people hired.

• X =
∑n
i=1Xi .

• We take the expectation of both sides E[X] = E[
∑n
i=1Xi] .

E[X] = E[
n∑
i=1
Xi]

=
n∑
i=1
E[Xi]

=
n∑
i=1

Pr(Xi = 1)

What is Pr(Xi) = 1?

Analysis

What is Pr(Xj = 1) , the probability that we hire on the j th day?

Pr(X1 = 1) =??

Analysis

What is Pr(Xj = 1) , the probability that we hire on the j th day?

Pr(X1 = 1) = 1

Pr(X2 = 1) =??

Analysis

What is Pr(Xj = 1) , the probability that we hire on the j th day?

Pr(X1 = 1) = 1

Pr(X2 = 1) = 1/2

Pr(Xj = 1) =??

Analysis

What is Pr(Xj = 1) , the probability that we hire on the j th day?

Pr(X1 = 1) = 1

Pr(X2 = 1) = 1/2

Pr(Xj = 1) = 1/j

E[X] = E[
n∑
i=1
Xi]

=
n∑
i=1
E[Xi]

=
n∑
i=1

Pr(Xi = 1)

=
n∑
i=1

1

i
≈ lnn

Randomized algorithms vs. Probabilistic Analysis

• We have assumed that the candidates come in a random order.

• Can we remove this assumption?

Randomized algorithms vs. Probabilistic Analysis

• We have assumed that the candidates come in a random order.

• Can we remove this assumption?

Randomize the algorithm:

• Force the candidates to come in a random order by randomly permuting

the data, before we start.

• We have now eliminated an adversarial-chosen bad case, the only bad

case is to be extremely unlucky in our coin flips.

Case of Sorting

Scenario Imagine a sorting algorithm whose bad case is when the data

comes in reverse sorted order.

• Data is “random”: Bad case is reverse sorted order.

• Algorithm is random: some set of coin flips that occur with probability

1/n! makes the algorithm slow

Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the n!

possible permutations are equally likely.

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Lemma Procedure Randomize-In-Place computes a uniform random per-

mutation.

Def Given a set of n elements, a k-permutation is a sequence containing k

of the n elements.

There are n!/(n− k)! possible k-permutations of n elements

Proof via Loop invariant

We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Initialization

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Initialization Consider the situation just before the first loop iteration, so

that i = 1. The loop invariant says that for each possible 0-permutation,

the subarray A[1 . . 0] contains this 0-permutation with probability (n − i +
1)!/n! = n!/n! = 1. The subarray A[1 . . 0] is an empty subarray, and a 0-

permutation has no elements. Thus, A[1 . . 0] contains any 0-permutation

with probability 1, and the loop invariant holds prior to the first iteration.

Maintenance

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Maintenance We assume that just before the (i−1)st iteration, each possible

(i − 1)-permutation appears in the subarray A[1 . . i − 1] with probability

(n− i + 1)!/n!, and we will show that after the ith iteration, each possible

i-permutation appears in the subarray A[1 . . i] with probability (n − i)!/n!.
Incrementing i for the next iteration will then maintain the loop invariant.

Let us examine the ith iteration. Consider a particular i-permutation,

and denote the elements in it by < x1, x2, . . . , xi >. This permutation consists

of an (i − 1)-permutation < x1, . . . , xi−1 > followed by the value xi that the

algorithm places in A[i]. Let E1 denote the event in which the first i − 1

iterations have created the particular (i− 1)-permutation < x1, . . . , xi−1 > in

A[1 . . i−1]. By the loop invariant, Pr(E1) = (n− i+1)!/n!. Let E2 be the event

that ith iteration puts xi in position A[i]. The i-permutation < x1, . . . , xi >

is formed in A[1 . . i] precisely when both E1 and E2 occur, and so we wish

to compute Pr(E2 ∩ E1). Using equation ??, we have

Pr(E2 ∩ E1) = Pr(E2 | E1)Pr(E1) .

The probability Pr(E2 | E1) equals 1/(n−i+1) because in line 3 the algorithm

chooses xi randomly from the n− i+1 values in positions A[i . . n]. Thus, we

have

Pr(E2 ∩ E1) = Pr(E2 | E1)Pr(E1)

=
1

n− i + 1
· (n− i + 1)!

n!

=
(n− i)!
n!

.

Termination

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Termination At termination, i = n + 1, and we have that the subarray

A[1 . . n] is a given n-permutation with probability (n− n)!/n! = 1/n!.

