Randomization in Algorithms

e Randomization is a tool for designing good algorithms.
e Two kinds of algorithms

— Las Vegas - always correct, running time is random.

— Monte Carlo - may return incorrect answers, but running time is
deterministic.

Hiring Problem

Hire — Assistant(n)

1
2
3

O Ol =

best <— (0 > candidate O is a least-qualified dummy candidate
fori1+ 1ton
do interview candidate ¢
if candidate i is better than candidate best
then best <+ 1
hire candidate 1

How many times is a new person hired?

Analysis

e A random variable X takes on values from some set, each with a certain
probability.

e Expected value: F[X]|=1x Pr(X =2x)- -z

values z

e Example: rolling a die.

Expected number of hirings

e Assume that all orderings of candidates are equally likely.
e n! orderings, i, Mo, ..., Ty
e /1 is the total number of hirings.

e /i(m;) is the number of hirings for permutation 7, .

E[H] = ¥ ~h(m)

T n'

How do we compute E[H]?

Indicator random variables

e Let A be an event.

e The indicator variable /{A} is defined by:

1 if A occurs

)

T{A} = {

0 if A does not occur .

What is the expected number of heads when I flip a coin?

e Let Y be a random variable that denotes heads or tails.

e Let Xy be the i.r.v. that counts the number of heads.

1 1f Y is heads
0 otherwise

Xy =1{Y is heads} = {

E[Xy] = Pr(Xg=1)-1+Pr(Xy =0)-0

1+1 0
2

N —No | —

Linearity of Expectation

Let X and Y be two random variables
E[X +Y]=E[X]+ E[Y]
Linearity of expectation holds even if X and Y are dependent.

n coin flips

e What is FE[number of heads| when you flip n coins.

e Different events are:

— 0 heads
— 1 head

— 2 heads
— 3 heads

FE[number of heads| = i Pr(i heads in n flips) - ¢
i=0

(/

e Complicated calculation

e Is there another way?

Use indicator random variables

e Divide events not by number of heads overall, but by heads in :th flip.

e Let X, be the indicator random variable associated with the event in
which the i:th flip comes up heads:

e X, = [{the ith flip results in the event H}.

e Let X be the random variable denoting the total number of heads in
the n coin flips

e We take the expectation of both sides F|X]| = E[= ;| X;] .
BIX] = B[$: X)
= ;E[Xz’]
— Y 1/2
i=1
= n/2 .

Hiring

e Divide events not by number of hires overall, but by hires in :th flip.

e Let X, be the indicator random variable associated with the event in
which the ith person is hired

e X, = [{the ith person is hired}.

e Let X be the random variable denoting the total number of people hired.
o X =" X, .

e We take the expectation of both sides F|X| = E[x", X|] .

ElX] = E[X Xi]

What is Pr(X;) =17

Analysis

What is Pr(X; =1) , the probability that we hire on the j th day?

Analysis

What is Pr(X; =1) , the probability that we hire on the j th day?

PI’(Xl — 1) =1

Analysis

What is Pr(X; =1) , the probability that we hire on the j th day?

PI’(Xl — 1) =1

Pr(X,=1)=1/2

Analysis

What is Pr(X; =1) , the probability that we hire on the j th day?

S|
s
I
=
M=
s

@
I
_

I

Ms
I
2

~
I
—_

I
<
T
<L | = ny|
H
~—~
>
I
—_
N—

R |
=3 TI_M: '
S

Randomized algorithms vs. Probabilistic Analysis

® We have assumed that the candidates come in a random order.

e Can we remove this assumption?

Randomized algorithms vs. Probabilistic Analysis

® We have assumed that the candidates come in a random order.

e Can we remove this assumption?

Randomize the algorithm:

e Force the candidates to come in a random order by randomly permuting
the data, before we start.

e We have now eliminated an adversarial-chosen bad case, the only bad
case is to be extremely unlucky in our coin flips.

Case of Sorting

Scenario Imagine a sorting algorithm whose bad case is when the data
comes in reverse sorted order.

e Data is “random”: Bad case is reverse sorted order.

® Algorithm is random: some set of coin flips that occur with probability
1/n! makes the algorithm slow

Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the n!
possible permutations are equally likely.

RANDOMIZE-IN-PLACE(A)

1 n <+ length[A]
2 fori+1ton
3 do swap Ali| <> A|[RANDOM(Z, n)]

Lemma Procedure RANDOMIZE-IN-PLACE computes a uniform random per-
mutation.

Def Given a set of n elements, a k-permutation is a sequence containing £
of the n elements.

There are n!/(n — k)! possible k-permutations of n elements

Proof via Loop invariant

We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 2— 3, for each possible
(i — 1)-permutation, the subarray A[l..i— 1] contains this (i — 1)-permutation
with probability (n —i+ 1)!/nl.

Initialization

RANDOMIZE-IN-PLACE(A)

1 n < length[A]
2 fori+1ton
3 do swap Ali| <> A|[RANDOM(Z, n)]

Just prior to the ith iteration of the for loop of lines 2— 3, for each possible
(i — 1)-permutation, the subarray A[l..i—1] contains this (i — 1)-permutation
with probability (n —i+ 1)!/nl.

Initialization Consider the situation just before the first loop iteration, so
that : = 1. The loop invariant says that for each possible O-permutation,
the subarray A[l..0] contains this 0-permutation with probability (n — ¢ +
1)!/n! = n!l/n! = 1. The subarray A[l..0] is an empty subarray, and a 0-
permutation has no elements. Thus, A[l..0] contains any 0-permutation
with probability 1, and the loop invariant holds prior to the first iteration.

Maintenance

RANDOMIZE-IN-PLACE(A)

1 n < length[A]
2 fori+1ton
3 do swap Ali| <> A|[RANDOM(Z, n)]

Just prior to the ith iteration of the for loop of lines 2— 3, for each possible
(i — 1)-permutation, the subarray A[l..i—1] contains this (i — 1)-permutation
with probability (n —i+ 1)!/nl.

Maintenance We assume that just before the (i—1)st iteration, each possible
(i — 1)-permutation appears in the subarray A[l..i — 1] with probability
(n —i+1)!/n!, and we will show that after the ith iteration, each possible
i-permutation appears in the subarray A[l..i] with probability (n —i)!/nl.
Incrementing i for the next iteration will then maintain the loop invariant.

Let us examine the ith iteration. Consider a particular i-permutation,

and denote the elements in it by < xq, 29, ...,2; >. This permutation consists
of an (i — 1)-permutation < zi1,...,x;, 1 > followed by the value z; that the
algorithm places in A[i]. Let E; denote the event in which the first i — 1
iterations have created the particular (i — 1)-permutation < z1,..., 2,1 > in
All..i—1]. By the loop invariant, Pr(F,) = (n—i+1)!/n!. Let F, be the event
that ith iteration puts z; in position Ali]. The i-permutation < z1,...,x; >

is formed in A[l..i| precisely when both F; and E; occur, and so we wish
to compute Pr(F; N Ey). Using equation 77, we have

PI‘(EQ M El) = PI‘(EQ | El)PI'(El) .

The probability Pr(F, | E}) equals 1/(n—i+1) because in line 3 the algorithm
chooses z; randomly from the n —i+ 1 values in positions Ali..n|. Thus, we
have

PI‘(EQ M El) = PI‘(EQ ‘ El)PI‘(El)
1 (n—1i+1)!

Termination

RANDOMIZE-IN-PLACE(A)

1 n <« length|A]
2 fori+1ton
3 do swap Ali| <> A|[RANDOM(Z, n)]

Just prior to the ith iteration of the for loop of lines 2— 3, for each possible
(i — 1)-permutation, the subarray A[l..i—1] contains this (i — 1)-permutation
with probability (n —i+ 1)!/nl.

Termination At termination, i = n + 1, and we have that the subarray
All..n] is a given n-permutation with probability (n —n)!/n! = 1/nl.

