Greedy Algorithms

Informal Definition A greedy algorithm makes its next step based only on the current "state" and "simple" calculations on the input.

- "easy" to design
- not always correct
- challenge is to identify when greedy is the correct solution

Examples

- Rod cutting is not greedy. e.g. \quad profit $=(5,10,11,15)$
- Matrix Chain is not greedy.
- Change with U.S. coins is greedy
- Shortest paths with non-negative edge lengths is greedy, but not in the obvious way.

Greedy

Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests.
The requests for periods $\left(s_{i}, f_{i}\right)$ are:

$$
(1,4),(3,5),(0,6),(5,7),(3,8),(5,9),(6,10),(8,11),(8,12),(2,13),(12,14)
$$

Which ones should we schedule?

Greedy

Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests.
The requests for periods $\left(s_{i}, f_{i}\right)$ are:

$$
(1,4),(3,5),(0,6),(5,7),(3,8),(5,9),(6,10),(8,11),(8,12),(2,13),(12,14)
$$

Which ones should we schedule?

Code

1 Sort by finishing time, renumber with 1 having earliest finishing time
2 Output 1
3 last $=f_{1}$
4 for $i=2$ to n
5 do if $\left(s_{i} \geq\right.$ last $)$
6 then Output i
$7 \quad$ last $=f_{i}$

Proving a Greedy Algorithm is Optimal

Two components:

1. Optimal substructure
2. Greedy Choice Property: There exists an optimal solution that is consistent with the greedy choice made in the first step of the algorithm.

Optimal Substructure

- Let $c[i, j]$ be the number of activities scheduled from time i to time j

$$
c[i, j]=\left\{\begin{array}{ll}
0 & \text { if } S_{i j}=\emptyset, \tag{1}\\
\max _{a_{k} \in S_{i j}}\left\{c\left[i, s_{k}\right]+c\left[f_{k}, j\right]+1\right\} & \text { if } S_{i j} \neq \emptyset
\end{array} .\right.
$$

Greedy Choice

Greedy Choice Property

1. Let S_{k} be a nonempty subproblem containing the set of activities that finish after activity a_{k}.
2. Let a_{m} be an activity in S_{k} with the earliest finish time.
3. Then a_{m} is included in some maximum-size subset of mutually compatible activities of S_{k}.

Proof

- Let A_{k} be a maximum-size subset of mutually compatible activities in S_{k},
- let a_{j} be the activity in A_{k} with the earliest finish time.
- If $a_{j}=a_{m}$, we are done, since we have shown that a_{m} is in some maximumsize subset of mutually compatible activities of S_{k}.
- If $a_{j} \neq a_{m}$, let the set $A_{k}^{\prime}=A_{k}-\left\{a_{j}\right\} \cup\left\{a_{m}\right\}$
- The activities in A_{k}^{\prime} are disjoint, because
- the activities in A_{k} are disjoint,
$-a_{j}$ is the first activity in A_{k} to finish,
$-f_{m} \leq f_{j}$.
- Since $\left|A_{k}^{\prime}\right|=\left|A_{k}\right|$, we conclude that A_{k}^{\prime} is a maximum-size subset of mutually compatible activities of S_{k}, and it includes a_{m}.

Procedure for Designing a Greedy Algorithm

1. Identify optimal substructure
2. Cast the problem as a greedy algorithm with the greedy choice property
3. Write a simple iterative algorithm

Robbery

- I want to rob a house and I have a knapsack which holds B pounds of stuff
- I want to fill the knapsack with the most profitable items

item	1	2	3
weight	10	20	30
value	60	100	120
value/weight	6	5	4

Two variants

- integral knapsack: Take an item or leave it
- fractional knapsack: Can take a fraction of an item (infinitely divisible)

Fractional vs. Integral Knapsack

- Both fractional and integral knapsack have optimal substructure.
- Only fractional knapsack has the greedy choice property.

Fractional Knapsack

Greedy Choice Property: Let j be the item with maximum v_{i} / w_{i}. Then there exists an optimal solution in which you take as much of item j as possible.

Proof

- Suppose fpoc, that there exists an optimal solution in you didn't take as much of item j as possible.
- If the knapsack is not full, add some more of item j, and you have a higher value solution. Contradiction
- We thus assume the knapsack is full.
- There must exist some item $k \neq j$ with $\frac{v_{k}}{w_{k}}<\frac{v_{j}}{w_{j}}$ that is in the knapsack.
- We also must have that not all of j is in the knapsack.
- We can therefore take a piece of k, with ϵ weight, out of the knapsack, and put a piece of j with ϵ weight in.
- This increases the knapsack's value by

$$
\epsilon \frac{v_{j}}{w_{j}}-\epsilon \frac{v_{k}}{w_{k}}=\epsilon\left(\frac{v_{j}}{w_{j}}-\frac{v_{k}}{w_{k}}\right)>0
$$

Contradition to the original solution being optimal.

Algorithm

1. Sort items by v_{j} / w_{j}, renumber.
2. For $i=1$ to n

- Add as much of item i as possible

Question Why does this fail for integer knapsack?

Dynamic Programming Algorithm

- Let $A[x, W]$ be the maximum value obtainable from items $1, \ldots, x$ using at most W weight
- To compute $A[x, W]$, either

1. item x is in the best solution
2. item x is not.

Dynamic Programming Algorithm

- Let $A[x, W]$ be the maximum value obtainable from items $1, \ldots, x$ using at most W weight
- To compute $A[x, W]$, either

1. item x is in the best solution - include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most W
2. item x is not - then just use the best solution from $1, \ldots, x-1$ that has weight at most W.

Dynamic Programming Algorithm

- Let $A[x, W]$ be the maximum value obtainable from items $1, \ldots, x$ using at most W weight
- To compute $A[x, W]$, either

1. item x is in the best solution - include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most W
2. item x is not - then just use the best solution from $1, \ldots, x-1$ that has weight at most W.

$$
A[x, W]=\max \left\{A\left[x-1, W-w_{i}\right]+v_{i}, A[x-1, W]\right\}
$$

