
CSOR4231

Analysis of Algorithms



Algorithms are Everywhere

Examples

• Maps

• Fedex

• Biology

• Physics

• Computer Operating Systems

• Car Engines

• Space Shuttle

• . . .



Why is this the right time to study algorithms?

• Mathematical understanding

• fast computers

• ability to get algorithm implementations to users

• good interfaces



What do we study in this class

• Given a problem, we find the right algorithm

• We use math

• We prove that our work is right

• We keep an eye on practice/implementation, but our goal is to solve the

clean well-defined problem.



First problem to consider: Matrix Multiplication

C = A ·B

 3 1 1

2 0 3




1 6

2 0

1 2

 =

 6 20

5 18





Algorithm for Matrix Multiplication

C = A ·B

 3 1 1

2 0 3




1 6

2 0

1 2

 =

 6 20

5 18



Write pseudocode

1 // input: A, an n×m matrix and B, an m× p matrix

2 // output: C, an n× p matrix

3 for i = 1 to n

4 for j = 1 to p

5 C[i, j] = 0

6 for k = 1 to m

7 C[i, j]+ = A[i, k] ·B[k, j]



Analysis

1 // input: A, an n×m matrix and B, an m× p matrix

2 // output: C, an n× matrix

3 for i = 1 to n

4 for j = 1 to p

5 C[i, j] = 0

6 for k = 1 to m

7 C[i, j]+ = A[i, k] ·B[k, j]

Running time

• 3 nested loops

• O(nmp) time

• if n = m = p , then O(n3)time

• Lower bound of Ω(n2)



Can we do better?

• We are implementing the standard algorithm efficiently, what else could

we do?

• You have to do n3 operatation, each of n2 entries of C , involves

adding up the result of n multipications.



Can we do better?

• We are implementing the standard algorithm efficiently, what else could

we do?

• You have to do n3 operatation, each of n2 entries of C , involves

adding up the result of n multipications.

Maybe divide and conquer can help

 a b

c d


 e g

f h

 =

 r s

t u



r = ae + bf (1)

s = ag + bh (2)

t = ce + df (3)

u = cg + dh (4)



Maybe divide and conquer can help

 a b

c d


 e g

f h

 =

 r s

t u



r = ae + bf (5)

s = ag + bh (6)

t = ce + df (7)

u = cg + dh (8)

Multiply 2 n× n matrices takes

• 8 multiplications of n/2 × n/2 matrices

• 4 additions of n/2 × n/2 matrices

• Adding two n× n matrices takes O(n2) time

• Adding matrices seems easier than multiplying them



Let’s Analyze

Let T (n) be the time to multiply 2 n by n matrices

T (n) =

 8T (n/2) + 4(n/2)2 if n > 1

1 if n = 1



Let’s Analyze

Let T (n) be the time to multiply 2 n by n matrices

T (n) =

 8T (n/2) + 4(n/2)2 if n > 1

1 if n = 1

As we will learn, this solves to O(n3) .

But consider the following recurrence

T (n) =

 7T (n/2) + 18(n/2)2 if n > 1

1 if n = 1

As we will learn, this solves to O(nlog2 7) = O(n2.81..) .

But can we multiply 2 n× n matrices by doing 7 multiplications of

n/2 × n/2 matrices and 18 additions of n/2 × n/2 matrices.



Strassen’s Algorithm

To Compute

r = ae + bf (9)

s = ag + bh (10)

t = ce + df (11)

u = cg + dh (12)

Calculations

P1 = a(g − h) = ag − ah

P2 = (a + b)h = ah + bh

s = P1 + P2

P3 = (c + d)e = ce + de

P4 = d(f − e) = df − de

t = P3 + P4

P5 = (a + d)(e + h) = ae + ah + de + dh

P6 = (b− d)(h + f ) = −dh− df + bh + bf

r = P5 + P4 − P2 + P6

P7 = (a− c)(e + g) = ae + ag − ce− cg

u = P5 + P1 − P3 − P7



Course Logistics



Another Problem

Investing for someone who knows the Future: You are given the prices of

a stock for each of the next n days. You can buy once and sell once and

you want to maximize your profit.

Example
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Price 70 90 40 27 69 80 13 50 35 75 51 53 56 10 15 41

Questions:

• How long does the naive algorithm take?

• Can we improve this with divide and conquer?


