

Analysis of Algorithms

Algorithms are Everywhere

Examples

- Maps
- Fedex
- Biology
- Physics
- Computer Operating Systems
- Car Engines
- Space Shuttle
- . . .

Why is this the right time to study algorithms?

- Mathematical understanding
- fast computers
- ability to get algorithm implementations to users
- good interfaces

What do we study in this class

- Given a problem, we find the right algorithm
- We use math
- We prove that our work is right
- We keep an eye on practice/implementation, but our goal is to solve the clean well-defined problem.

First problem to consider: Matrix Multiplication

 $C = A \cdot B$

$$\begin{bmatrix} 3 & 1 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 2 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 20 \\ 5 & 18 \end{bmatrix}$$

Algorithm for Matrix Multiplication

 $C = A \cdot B$

$$\begin{bmatrix} 3 & 1 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 2 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 20 \\ 5 & 18 \end{bmatrix}$$

Write pseudocode

1 // input: A, an $n \times m$ matrix and B, an $m \times p$ matrix 2 // output: C, an $n \times p$ matrix 3 for i = 1 to n4 for j = 1 to p5 C[i, j] = 06 for k = 1 to m7 $C[i, j] + = A[i, k] \cdot B[k, j]$

Analysis

1 // input: A, an $n \times m$ matrix and B, an $m \times p$ matrix 2 // output: C, an $n \times$ matrix 3 for i = 1 to n4 for j = 1 to p5 C[i, j] = 06 for k = 1 to m7 $C[i, j] + = A[i, k] \cdot B[k, j]$

Running time

- 3 nested loops
- O(nmp) time
- if n = m = p, then $O(n^3)$ time
- Lower bound of $\Omega(n^2)$

Can we do better?

- We are implementing the standard algorithm efficiently, what else could we do?
- You have to do n^3 operatation, each of n^2 entries of C, involves adding up the result of n multiplications.

Can we do better?

- We are implementing the standard algorithm efficiently, what else could we do?
- You have to do n^3 operatation, each of n^2 entries of C, involves adding up the result of n multiplications.

Maybe divide and conquer can help

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & g \\ f & h \end{bmatrix} = \begin{bmatrix} r & s \\ t & u \end{bmatrix}$$

$$r = ae + bf \tag{1}$$

$$s = ag + bh \tag{2}$$

$$t = ce + df \tag{3}$$

$$u = cg + dh \tag{4}$$

Maybe divide and conquer can help

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & g \\ f & h \end{bmatrix} = \begin{bmatrix} r & s \\ t & u \end{bmatrix}$$

$$r = ae + bf \tag{5}$$

$$s = ag + bh \tag{6}$$

$$t = ce + df \tag{7}$$

$$u = cg + dh \tag{8}$$

Multiply 2 $n \times n$ matrices takes

- 8 multiplications of $n/2 \times n/2$ matrices
- 4 additions of $n/2 \times n/2$ matrices
- Adding two $n \times n$ matrices takes $O(n^2)$ time
- Adding matrices seems easier than multiplying them

Let's Analyze

Let T(n) be the time to multiply 2 n by n matrices

$$T(n) = \begin{cases} 8T(n/2) + 4(n/2)^2 & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

Let's Analyze

Let T(n) be the time to multiply 2 n by n matrices

$$T(n) = \begin{cases} 8T(n/2) + 4(n/2)^2 & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

As we will learn, this solves to $O(n^3)$.

But consider the following recurrence

$$T(n) = \begin{cases} 7T(n/2) + 18(n/2)^2 & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

As we will learn, this solves to $O(n^{\log_2 7}) = O(n^{2.81..})$.

But can we multiply 2 $n \times n$ matrices by doing 7 multiplications of $n/2 \times n/2$ matrices and 18 additions of $n/2 \times n/2$ matrices.

Strassen's Algorithm

To Compute

$$r = ae + bf \tag{9}$$

$$s = ag + bh \tag{10}$$

$$t = ce + df \tag{11}$$

$$u = cg + dh \tag{12}$$

Calculations

$$P_{1} = a(g - h) = ag - ah$$

$$P_{2} = (a + b)h = ah + bh$$

$$s = P_{1} + P_{2}$$

$$P_{3} = (c + d)e = ce + de$$

$$P_{4} = d(f - e) = df - de$$

$$t = P_{3} + P_{4}$$

$$P_{5} = (a + d)(e + h) = ae + ah + de + dh$$

$$P_{6} = (b - d)(h + f) = -dh - df + bh + bf$$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$P_{7} = (a - c)(e + g) = ae + ag - ce - cg$$

$$u = P_{5} + P_{1} - P_{3} - P_{7}$$

Course Logistics

Another Problem

Investing for someone who knows the Future: You are given the prices of a stock for each of the next n days. You can buy once and sell once and you want to maximize your profit.

Example	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Price	70	90	40	27	69	80	13	50	35	75	51	53	56	10	15	41

Questions:

- How long does the naive algorithm take?
- Can we improve this with divide and conquer?