Basics of Algorithm Analysis

- We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).
- We work in the RAM model of computation. All "reasonable" operations take " 1 " unit of time. (e.g.,+ , - , /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

Example

```
input: }A[n
for }i=1\mathrm{ to }
    if (A[i]== 7)
        for }j=1\mathrm{ to }
        for k=1 to n
                        Print "hello"
```

- What is the worst case running time?
- What is the best case running time?
- What is the average case running time?

Example

```
input: }A[n
for }i=1\mathrm{ to }
    if (A[i]==7)
        for }j=1\mathrm{ to }
        for }k=1\mathrm{ to }
                        Print "hello"
```

- What is the worst case running time? $O\left(n^{3}\right)$
- What is the best case running time? $\quad O(n)$
- What is the average case running time? What is an average array?

How do we measure the running time?

We measure as a function of n, and ignore low order terms.

- $5 n^{3}+n-6$ becomes n^{3}
- $8 n \log n-60 n$ becomes $n \log n$
- $2^{n}+3 n^{4}$ becomes 2^{n}

Asymptotic notation

big-O
$O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$.
Alternatively, we say
$f(n)=O(g(n))$ if there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$
Informally, $f(n)=O(g(n))$ means that $f(n)$ is asymptotically less than or equal to $g(n)$.
big- Ω
$\Omega(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
Alternatively, we say

$$
\begin{aligned}
& f(n)=\Omega(g(n)) \text { if there exist positive constants } c \text { and } n_{0} \text { such that } \\
& \left.0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\right\} .
\end{aligned}
$$

Informally, $f(n)=\Omega(g(n)$ means that $f(n)$ is asymptotically greater than or equal to $g(n)$.

big- Θ

$f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.
Informally, $f(n)=\Theta(g(n)$ means that $f(n)$ is asymptotically equal to $g(n)$.

INFORMAL summary

- $f(n)=O(g(n))$ roughly means $f(n) \leq g(n)$
- $f(n)=\Omega(g(n))$ roughly means $f(n) \geq g(n)$
- $f(n)=\Theta(g(n))$ roughly means $f(n)=g(n)$
- $f(n)=o(g(n))$ roughly means $f(n)<g(n)$
- $f(n)=w(g(n))$ roughly means $f(n)>g(n)$

Big-O proofs

(turn on light)

- $3 n=O\left(n^{2}\right)$
- $2 n+7=O(n)$
- $n^{\log n}=O\left(2^{n}\right)$

Use of big-O

$$
\begin{gathered}
2 n+7=O(n) \\
2 n+7=O\left(n^{3}\right) \\
2 n+7=O\left(n^{4.5} \log n\right) \\
2 n+7=O\left(2^{n}\right)
\end{gathered}
$$

Which of these do we care about?

Use of big-O

$$
\begin{gathered}
2 n+7=O(n) \\
2 n+7=O\left(n^{3}\right) \\
2 n+7=O\left(n^{4.5} \log n\right) \\
2 n+7=O\left(2^{n}\right)
\end{gathered}
$$

Which of these do we care about?

- Given a function $f(n)$, we want to know the "smallest" $g(n)$ such that $f(n)=O(g(n))$ and $g(n)$ is "simple"

Simple Functions

- Given a function $f(n)$, we want to know the "smallest" $g(n)$ such that $f(n)=O(g(n))$ and $g(n)$ is "simple"
- Typical simple functions include (but are not limited to)
-1
$-\log \log n$
$-\log n$
$-\log ^{2} n$
$-n$
$-n \log n$
$-n^{2}$
$-n^{3}$
-2^{n}
$-n$!
- We use these to classify algorithms into classes

See chart for justification

Polynomial Time

An algorithm runs in polynomial time if, on an input of size n, its running time is $O\left(n^{k}\right)$ for some constant k.
2^{n} is NOT polynomial. Let's try to prove that it is polynomial and see what goes wrong.

Proving Omega and Theta

$f(n)=\Omega(g(n))$ if there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.

$$
f(n)=\Theta(g(n)) \text { if and only if } f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n)) .
$$

3 useful formulas

Arithmetic series

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Geometric series

$$
\sum_{i=0}^{\infty} a^{i}=\frac{1}{1-a} \quad \text { for } 0<a<1
$$

Harmonic series

$$
\sum_{i=1}^{n} \frac{1}{i}=\ln n+O(1)=\Theta(\ln n)
$$

Arithmetic Series in PseudoCode

$\mathbf{1}$	for $i=1$ to n
$\mathbf{2}$	for $j=1$ to n
$\mathbf{3}$	Jump up and down
compared to	
$\mathbf{1}$	for $i=1$ to n
$\mathbf{2}$	for $j=1$ to i
$\mathbf{3}$	Jump up and down

Geometric Series

1 for $i=1$ to $\log n$
2 for $j=1$ to 2^{i}
3 Jump up and down
or

```
JUMP(n)
if n=1
    Jump up and down once
else
    Jump up and down }n\mathrm{ times
    JUMP(\lfloorn/2\rfloor)
```


A few facts about logs

- $\log _{b} a=\frac{\log _{c} b}{\log _{c} a}$ for any $c>1$
- therefore $\ln n=O(\log n)$
- in general, the base of the logarithm in a big-O statement is not important

$$
\begin{aligned}
n+\frac{n}{2}+\frac{n}{3}+\frac{n}{4}+\frac{n}{5}+\ldots & =n\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right) \\
& =O(n \log n)
\end{aligned}
$$

Algorithmic Correctness

- Very important, but we won't typically prove correctness from first principles.
- We will use loop invariants
- We will use other problem specific methods

Divide and Conquer

- Divide a problem into pieces
- Recursively solve the pieces
- Combine the solutions to the subproblems

Strassen

- divide into $7 n / 2 \times n / 2$ size problems
- solved recursive problems
- used 18 additions to combine the pieces

MergeSort

```
1 Merge - Sort(A,p,r)
2 if p<r
3 q=\(p+r)/2\rfloor
M Merge-Sort (A,p,q)
5 Merge-Sort ( }A,q+1,r
6 Merge(A,p,q,r)
```

Let $T(n)$ be the running time of MergeSort on n items. Merge takes $O(n)$ time.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1, \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1 .\end{cases}
$$

3 Recurrence Trees

1. $T(n)=2 T(n / 2)+n$
2. $T(n)=2 T(n / 2)+1$
3. $T(n)=2 T(n / 2)+n^{2}$

Master Theorem

Master Theorem for Recurrences Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
T(n)=a T(n / b)+f(n),
$$

where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.
