Basics of Algorithm Analysis

e We measure running time as a function of n, the size of the input (in
bytes assuming a reasonable encoding).

e We work in the RAM model of computation. All “reasonable” oper-
ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer
following, writing a value, one byte of 1/0...)

What is the running time of an algorithm
e Best case (seldom used)
e Average case (used if we understand the average)

e Worst case (used most often)
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Example

input: An|
fori=1ton
if (A[i] —7)
for j=1ton

for k=1ton
Print “hello”

e What is the worst case running time?
e What is the best case running time?

e What is the average case running time?
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Example

input: An|
fori=1ton
if (A[i] —7)
for j=1ton

for k=1ton
Print “hello”

e What is the worst case running time?  O(n’)
e What is the best case running time? O(n)

e What is the average case running time? What is an average array?



How do we measure the running time?

We measure as a function of n, and ignore low order terms.
e 5n® +n — 6 becomes n’
e 8nlogn — 60n becomes nlogn

e 2" + 3n* becomes 2"



Asymptotic notation

big-O
O(g(n)) ={f(n) : there exist positive constants ¢ and n, such that
0< f(n) <cg(n) for all n > ny} .

Alternatively, we say

f(n) = O(g(n)) if there exist positive constants ¢ and n, such that
0 < f(n) <cg(n) for all n > ngy}

Informally, f(n) = O(g(n)) means that f(n) is asymptotically less than or
equal to g(n).

big-Q

Q(g(n)) = {f(n) : there exist positive constants ¢ and ny such that
0<cg(n) < f(n) for all n > ny} .

Alternatively, we say

f(n) =8Q(g(n)) if there exist positive constants ¢ and n; such that
0 <cg(n) < f(n) for all n > ny} .

Informally, f(n) = ((g(n) means that f(n) is asymptotically greater than
or equal to g(n).



big-0

f(n) = ©g(n)) if and only if f(n) = O(g(n)) and f(n) = QAg(n))
Informally, f(n) = ©(g(n) means that f(n) is asymptotically equal to g(n).

INFORMAL summary
e f(n) = O(g(n)) roughly means f(n)
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Big-O proofs

(turn on light)
e 3n = O(n?)
®2n+7=0(n)
o nloe" = O(2")



Use of big-O

2n + 7= 0(n)
2n +7 = O(n*)
2n + 7 = O(n*logn)

2n+7=0(2")

Which of these do we care about?



Use of big-O

2n 4+ 7= 0(n)

on + 7= O(n?)
2n + 7 = O(n*logn)

2n +7=0(2")

Which of these do we care about?

e Given a function f(n), we want to know the “smallest” ¢(n) such that
f(n)=0(g(n)) and g(n) is “simple”



Simple Functions

e Given a function f(n), we want to know the “smallest” ¢(n) such that
f(n)=0(g(n)) and g¢g(n) is “simple”

e Typical simple functions include (but are not limited to)
—1
— loglogn
— logn

—log*n

e We use these to classify algorithms into classes

See chart for justification



Polynomial Time

An algorithm runs in polynomial time if, on an input of size n , its
running time is O(n") for some constant F .

2" is NOT polynomial. Let’s try to prove that it is polynomial and see
what goes wrong.



Proving Omega and Theta

f(n) =Q(g(n)) if there exist positive constants ¢ and ny such that
0 <cg(n) < f(n) for all n > ny} .

f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).



Arithmetic series

Geometric series

Harmonic series

3 useful formulas

zn:i:n(nJrl)

i=1 2
00 1
SYa = for0<a<1
1=0 1l —a



Arithmetic Series in PseudoCode

1 fori=1ton
2 for j=1ton
3 Jump up and down

compared to

1 fori=1ton
2 for j=1to1
3 Jump up and down



(Geometric Series

1 fori=1to logn
2 for j =1 to 2
3 Jump up and down

or
1 JuMP(n)

2 ifn=1

3 Jump up and down once

4 else

5 Jump up and down n times
6 JUMP(|n/2])



A few facts about logs

_ log.b
® log,a = g for any ¢ >1

e therefore Inn = O(logn)

e in general, the base of the logarithm in a big-O statement is not impor-
tant

LI L (1+1+1+1+1+ )
Ty Ty Ty T T Ty Ty T Ty

= O(nlogn)



Algorithmic Correctness

e Very important, but we won’t typically prove correctness from first
principles.

e We will use loop invariants

e We will use other problem specific methods



Divide and Conquer

e Divide a problem into pieces
e Recursively solve the pieces

e Combine the solutions to the subproblems

Strassen
e divide into 7 n/2 x n/2 size problems
® solved recursive problems

e used 18 additions to combine the pieces



MergeSort

1 Merge — Sort(A,p,r)

2 ifp<r

3 q=|p+r)/2]

4 MERGE-SORT(A, p, q)

5 MERGE-SORT(A, q+ 1,r)
6 MERCE(A, p, q,7)

Let T(n) be the running time of MergeSort on n items. Merge takes O(n)
time.
] e) ifn=1,
Tm)_{QTmﬁD+®OUifn>1.



3 Recurrence Trees




Master Theorem

Master Theorem for Recurrences Let a > 1 and b > 1 be constants, let f(n)
be a function, and let T(n) be defined on the non-negative integers by the
recurrence

T(n) = aT(n/b) + f(n) |
where we interpret n/b to mean either |n/b| or [n/b|. Then T(n) can be
bounded asymptotically as follows.

1. If f(n) = O(n'*®%¢) for some constant ¢ > 0, then T'(n) = O(n'*& ),
2. If f(n) = ©(n'°?), then T(n) = O(n°®*1gn).
)

3. If f(n) = Q(n°®*") for some constant ¢ > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O(f(n)).



