
Basics of Algorithm Analysis

• We measure running time as a function of n, the size of the input (in

bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” oper-

ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer

following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)

• Average case (used if we understand the average)

• Worst case (used most often)



Example

1 input: A[n]

2 for i = 1 to n

3 if (A[i] == 7)

4 for j = 1 to n

5 for k = 1 to n

6 Print “hello”

• What is the worst case running time?

• What is the best case running time?

• What is the average case running time?



Example

1 input: A[n]

2 for i = 1 to n

3 if (A[i] == 7)

4 for j = 1 to n

5 for k = 1 to n

6 Print “hello”

• What is the worst case running time? O(n3)

• What is the best case running time? O(n)

• What is the average case running time? What is an average array?



How do we measure the running time?

We measure as a function of n, and ignore low order terms.

• 5n3 + n− 6 becomes n3

• 8n log n− 60n becomes n log n

• 2n + 3n4 becomes 2n



Asymptotic notation

big-O

O(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .
Alternatively, we say

f (n) = O(g(n)) if there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Informally, f (n) = O(g(n)) means that f (n) is asymptotically less than or

equal to g(n).

big-Ω

Ω(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .
Alternatively, we say

f (n) = Ω(g(n)) if there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

Informally, f (n) = Ω(g(n) means that f (n) is asymptotically greater than

or equal to g(n).



big-Θ

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n)).

Informally, f (n) = Θ(g(n) means that f (n) is asymptotically equal to g(n).

INFORMAL summary

• f (n) = O(g(n)) roughly means f (n) ≤ g(n)

• f (n) = Ω(g(n)) roughly means f (n) ≥ g(n)

• f (n) = Θ(g(n)) roughly means f (n) = g(n)

• f (n) = o(g(n)) roughly means f (n) < g(n)

• f (n) = w(g(n)) roughly means f (n) > g(n)



Big-O proofs

(turn on light)

• 3n = O(n2)

• 2n + 7 = O(n)

• nlog n = O(2n)



Use of big-O

2n + 7 = O(n)

2n + 7 = O(n3)

2n + 7 = O(n4.5 log n)

2n + 7 = O(2n)

Which of these do we care about?



Use of big-O

2n + 7 = O(n)

2n + 7 = O(n3)

2n + 7 = O(n4.5 log n)

2n + 7 = O(2n)

Which of these do we care about?

• Given a function f (n) , we want to know the “smallest” g(n) such that

f (n) = O(g(n)) and g(n) is “simple”



Simple Functions

• Given a function f (n) , we want to know the “smallest” g(n) such that

f (n) = O(g(n)) and g(n) is “simple”

• Typical simple functions include (but are not limited to)

– 1

– log log n

– log n

– log2 n

– n

– n log n

– n2

– n3

– 2n

– n!

• We use these to classify algorithms into classes

See chart for justification



Polynomial Time

An algorithm runs in polynomial time if, on an input of size n , its

running time is O(nk) for some constant k .

2n is NOT polynomial. Let’s try to prove that it is polynomial and see

what goes wrong.



Proving Omega and Theta

f (n) = Ω(g(n)) if there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n)).



3 useful formulas

Arithmetic series

n∑
i=1
i =

n(n + 1)

2

Geometric series

∞∑
i=0
ai =

1

1− a
for 0 < a < 1

Harmonic series

n∑
i=1

1

i
= lnn + O(1) = Θ(lnn)



Arithmetic Series in PseudoCode

1 for i = 1 to n

2 for j = 1 to n

3 Jump up and down

compared to

1 for i = 1 to n

2 for j = 1 to i

3 Jump up and down



Geometric Series

1 for i = 1 to log n

2 for j = 1 to 2i

3 Jump up and down

or

1 jump(n)

2 if n = 1

3 Jump up and down once

4 else

5 Jump up and down n times

6 jump(bn/2c)



A few facts about logs

• logb a = logc b
logc a

for any c > 1

• therefore lnn = O(log n)

• in general, the base of the logarithm in a big-O statement is not impor-

tant

n +
n

2
+
n

3
+
n

4
+
n

5
+ . . . = n

1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .


= O(n log n)



Algorithmic Correctness

• Very important, but we won’t typically prove correctness from first

principles.

• We will use loop invariants

• We will use other problem specific methods



Divide and Conquer

• Divide a problem into pieces

• Recursively solve the pieces

• Combine the solutions to the subproblems

Strassen

• divide into 7 n/2× n/2 size problems

• solved recursive problems

• used 18 additions to combine the pieces



MergeSort

1 Merge− Sort(A, p, r)
2 if p < r

3 q = b(p + r)/2c
4 Merge-Sort(A, p, q)

5 Merge-Sort(A, q + 1, r)

6 Merge(A, p, q, r)

Let T (n) be the running time of MergeSort on n items. Merge takes O(n)

time.

T (n) =

 Θ(1) if n = 1 ,

2T (n/2) + Θ(n) if n > 1 .



3 Recurrence Trees

1. T (n) = 2T (n/2) + n

2. T (n) = 2T (n/2) + 1

3. T (n) = 2T (n/2) + n2



Master Theorem

Master Theorem for Recurrences Let a ≥ 1 and b > 1 be constants, let f (n)

be a function, and let T (n) be defined on the non-negative integers by the

recurrence

T (n) = aT (n/b) + f (n) ,

where we interpret n/b to mean either bn/bc or dn/be. Then T (n) can be

bounded asymptotically as follows.

1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a lg n).

3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if af (n/b) ≤ cf (n) for

some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n)).


