Matrix-Chain Multiplication

- Let A be an n by m matrix, let B be an m by p matrix, then $C=A B$ is an n by p matrix.
- $C=A B$ can be computed in $O(n m p)$ time, using traditional matrix multiplication.
- Suppose I want to compute $A_{1} A_{2} A_{3} A_{4}$.
- Matrix Multiplication is associative, so I can do the multiplication in several different orders.

Example:

- A_{1} is $\mathbf{1 0}$ by 100 matrix
- A_{2} is 100 by 5 matrix
- A_{3} is 5 by 50 matrix
- A_{4} is 50 by 1 matrix
- $A_{1} A_{2} A_{3} A_{4}$ is a 10 by 1 matrix

Example

- A_{1} is 10 by 100 matrix
- A_{2} is 100 by 5 matrix
- A_{3} is 5 by 50 matrix
- A_{4} is 50 by 1 matrix
- $A_{1} A_{2} A_{3} A_{4}$ is a 10 by 1 matrix

5 different orderings $=5$ different parenthesizations

- $\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$
- $\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$
- $\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$
- $\left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right)$
- $\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)$

Each parenthesization is a different number of mults
Let $A_{i j}=A_{i} \cdots A_{j}$

Example

- A_{1} is 10 by 100 matrix, A_{2} is 100 by 5 matrix, A_{3} is 5 by 50 matrix, A_{4} is 50 by 1 matrix, $A_{1} A_{2} A_{3} A_{4}$ is a 10 by 1 matrix.
- $\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$
$-A_{34}=A_{3} A_{4}, 250$ mults, result is 5 by 1
$-A_{24}=A_{2} A_{34}, 500$ mults, result is $\mathbf{1 0 0}$ by 1
$-A_{14}=A_{1} A_{24}, \mathbf{1 0 0 0}$ mults, result is $\mathbf{1 0}$ by 1
- Total is 1750
- $\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$
$-A_{12}=A_{1} A_{2}, 5000$ mults, result is 10 by 5
$-A_{34}=A_{3} A_{4}, 250$ mults, result is 5 by 1
$\left.-A_{14}=A_{12} A_{34}\right), 50$ mults, result is $\mathbf{1 0}$ by 1
- Total is 5300
- $\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$
$-A_{12}=A_{1} A_{2}, 5000$ mults, result is 10 by 5
$-A_{13}=A_{12} A_{3}, \mathbf{2 5 0 0}$ mults, result is $\mathbf{1 0}$ by 50
$-A_{14}=A_{13} A_{4}, 500$ mults, results is $\mathbf{1 0}$ by 1
- Total is 8000

Example

- A_{1} is 10 by 100 matrix, A_{2} is 100 by 5 matrix, A_{3} is 5 by 50 matrix, A_{4} is 50 by 1 matrix, $A_{1} A_{2} A_{3} A_{4}$ is a 10 by 1 matrix.
- $\left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right)$
$-A_{23}=A_{2} A_{3}, 25000$ mults, result is 100 by 50
$-A_{13}=A_{1} A_{23}, 50000$ mults, result is $\mathbf{1 0}$ by 50
$-A_{14}=A_{13} A_{4}, 500$ mults, results is $\mathbf{1 0}$ by
- Total is 75500
- $\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)$
$-A_{23}=A_{2} A_{3}, 25000$ mults, result is 100 by 50
$-A_{24}=A_{23} A_{4}, 5000$ mults, result is 100 by 1
$-A_{14}=A_{1} A_{24}, \mathbf{1 0 0 0}$ mults, result is $\mathbf{1 0}$ by $\mathbf{1}$
- Total is 31000

Conclusion Order of operations makes a huge difference. How do we compute the minimum?

One approach

Parenthesization A product of matrices is fully parenthesized if it is either

- a single matrix, or
- a product of two fully parenthesized matrices, surrounded by parentheses

Each parenthesization defines a set of n-1 matrix multiplications. We just need to pick the parenthesization that corresponds to the best ordering.

How many parenthesizations are there?

One approach

Parenthesization A product of matrices is fully parenthesized if it is either

- a single matrix, or
- a product of two fully parenthesized matrices, surrounded by parentheses

Each parenthesization defines a set of n-1 matrix multiplications. We just need to pick the parenthesization that corresponds to the best ordering.

How many parenthesizations are there?
Let $\mathrm{P}(\mathrm{n})$ be the number of ways to parenthesize n matrices.

$$
P(n)=\left\{\begin{array}{r}
\Sigma_{k=1}^{n-1} P(k) P(n-k) \text { if } n \geq 2 \\
1 \text { if } n=1
\end{array}\right.
$$

This recurrence is related to the Catalan numbers, and solves to

$$
P(n)=\Omega\left(4^{n} / n^{3 / 2}\right) .
$$

Conclusion Trying all possible parenthesizations is a bad idea.

Use dynamic programming

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution bottom-up
4. Construct an optimal solution from the computed information

Structure of an optimal solution If the outermost parenthesization is

$$
\left(\left(A_{1} A_{2} \cdots A_{i}\right)\left(A_{i+1} \cdots A_{n}\right)\right)
$$

then the optimal solution consists of solving $A_{1 i}$ and $A_{i+1, n}$ optimally and then combining the solutions.

Proof

Structure of an optimal solution If the outermost parenthesization is

$$
\left(\left(A_{1} A_{2} \cdots A_{i}\right)\left(A_{i+1} \cdots A_{n}\right)\right)
$$

then the optimal solution consists of solving $A_{1 i}$ and $A_{i+1, n}$ optimally and then combining the solutions.

Proof: Consider an optimal algorithm that does not solve $A_{1 i}$ optimally. Let x be the number of multiplications it does to solve $A_{1 i}, y$ be the number of multiplications it does to solve $A_{i+1, n}$, and z be the number of multiplications it does in the final step. The total number of multiplications is therefore

$$
x+y+z .
$$

But since it is not solving $A_{1 i}$ optimally, there is a way to solve $A_{1 i}$ using $x^{\prime}<x$ multiplications. If we used this optimal algorithm instead of our current one for $A_{1 i}$, we would do

$$
x^{\prime}+y+z<x+y+z
$$

multiplications and therefore have a better algorithm, contradicting the fact that our algorithms is optimal.

Proof

Proof: Consider an optimal algorithm that does not solve $A_{1 i}$ optimally. Let x be the number of multiplications it does to solve $A_{1 i}, y$ be the number of multiplications it does to solve $A_{i+1, n}$, and z be the number of multiplications it does in the final step. The total number of multiplications is therefore

$$
x+y+z .
$$

But since it is not solving $A_{1 i}$ optimally, there is a way to solve $A_{1 i}$ using $x^{\prime}<x$ multiplications. If we used this optimal algorithm instead of our current one for $A_{1 i}$, we would do

$$
x^{\prime}+y+z<x+y+z
$$

multiplications and therefore have a better algorithm, contradicting the fact that our algorithms is optimal.

Meta-proof that is not a correct proof Our problem consists of subproblems, assume we didn't solve the subproblems optimally, then we could just replace them with an optimal subproblem solution and have a better solution.

Recursive solution

In the enumeration of the $P(n)=\Omega\left(4^{n} / n^{3 / 2}\right)$ subproblems, how many unique subproblems are there?

Recursive solution

In the enumeration of the $P(n)=\Omega\left(4^{n} / n^{3 / 2}\right)$ subproblems, how many unique subproblems are there?

Answer: A subproblem is of the form $A_{i j}$ with $1 \leq i, j \leq n$, so there are $O\left(n^{2}\right)$ subproblems!

Notation

- Let A_{i} be p_{i-1} by p_{i}.
- Let $m[i, j]$ be the cost of computing $A_{i j}$

If the final multiplication for $A_{i j}$ is $A_{i j}=A_{i k} A_{k+1, j}$ then

$$
m[i, j]=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j} .
$$

We don't know k a priori, so we take the minimum

$$
m[i, j]=\left\{\begin{array}{rr}
0 & \text { if } i=j, \\
\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j
\end{array}\right.
$$

Direct recursion on this does not work! We must use the fact that there are at most $O\left(n^{2}\right)$ different calls. What is the order?

The final code

```
Matrix-Chain-Order(p)
    \(n \leftarrow\) length \([p]-1\)
    for \(i \leftarrow 1\) to \(n\)
        do \(m[i, i] \leftarrow 0\)
    for \(l \leftarrow 2\) to \(n \quad \triangleright l\) is the chain length.
        do for \(i \leftarrow 1\) to \(n-l+1\)
        do \(j \leftarrow i+l-1\)
        \(m[i, j] \leftarrow \infty\)
        for \(k \leftarrow i\) to \(j-1\)
        do \(q \leftarrow m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\)
            if \(q<m[i, j]\)
            then \(m[i, j] \leftarrow q\)
                        \(s[i, j] \leftarrow k\)
```

 return \(m\) and \(s\)