Quicksort

$\operatorname{Quicksort}(A, p, r)$
1 if $p<r$
$2 \quad$ then $q \leftarrow \operatorname{Partition}(A, p, r)$
$3 \quad \operatorname{Quicksort}(A, p, q-1)$
4

$$
\operatorname{Quicksort}(A, q+1, r)
$$

```
    Partition \((A, p, r)\)
    \(y \leftarrow \operatorname{RANDOM}(p, r)\)
    Exchange \(A[y]\) and \(A[r]\)
    \(x \leftarrow A[r]\)
    \(i \leftarrow p-1\)
    for \(j \leftarrow p\) to \(r-1\)
    do if \(A[j] \leq x\)
        then \(i \leftarrow i+1\)
        exchange \(A[i] \leftrightarrow A[j]\)
    exchange \(A[i+1] \leftrightarrow A[r]\)
    return \(i+1\)
```


Partition Loop Invariant

Partition (A, p, r)

```
\(1 \quad y \leftarrow \operatorname{RANDOM}(p, r)\)
2 Exchange \(A[y]\) and \(A[r]\)
\(3 \quad x \leftarrow A[r]\)
\(4 \quad i \leftarrow p-1\)
5 for \(j \leftarrow p\) to \(r-1\)
\(6 \quad\) do if \(A[j] \leq x\)
\(7 \quad\) then \(i \leftarrow i+1\)
\(8 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
9 exchange \(A[i+1] \leftrightarrow A[r]\)
10 return \(i+1\)
```

Loop Invariant At the beginning of each iteration of the for loop in Partition

1. $A[p \ldots i] \leq x$
2. $A[i+1 \ldots j-1]>x$
3. $A[j \ldots r-1]$ is unexamined
4. $A[r]=x$

Quicksort Analysis

- $T(n)$ is the expected running time of quicksort
- Partition takes $O(n)$ time.
- If partition is x th smallest, then

$$
T(n)=T(x)+T(n-x)+O(n)
$$

Quicksort Analysis

- $T(n)$ is the expected running time of quicksort
- Partition takes $O(n)$ time.
- If partition is x th smallest, then

$$
T(n)=T(x)+T(n-x)+O(n)
$$

For intution consider cases:

- $x=n / 2$
- $x=n / 10$
- $x=1$

Cases

$$
T(n)=T(x)+T(n-x)+O(n)
$$

1: $x=n / 2$

$$
\begin{aligned}
T(n) & =T(n / 2)+T(n / 2)+O(n) \\
& =2 T(n / 2)+O(n) \\
& =O(n \log n)
\end{aligned}
$$

2: $x=n / 10$

$$
\begin{aligned}
T(n) & =T(n / 10)+T(9 n / 10)+O(n) \\
& =O(n \log n)
\end{aligned}
$$

3: $x=1$

$$
\begin{aligned}
T(n) & =T(1)+T(n-1)+O(n) \\
& =T(n-1)+O(n) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

What might this make us guess the answer is?

Following the Selection Analysis

$$
T(n)=\sum_{i=1}^{n} \frac{1}{n}(T(i)+T(n-i)+O(n))
$$

could continue as in Selection.

Alternative Analysis

- We will count comparisons of data elements.
- Claim 1: The running time is dominated by comparison of data items.
- Claim 2: All comparisons are in line 6 of Partition, and compare some item $A[j]$ to the pivot element.
- Claim 3: Once an element is chosen as a pivot, it is never compared to any other element again.
- Claim 4: Each pair of elements is compared to each other at most once.

Analysis:

- Let the data be renamed Z_{1}, \ldots, Z_{n} in sorted order.
- Use $Z_{i j}$ to denote $Z_{i}, Z_{i+1}, \ldots, Z_{j}$
- Let $X_{i j}$ be the indicator random variable for the comparison of Z_{i} to Z_{j}.
- Let X be the random variable counting the number of comparisons.
- By claim 4, we have

$$
X=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}
$$

Analysis

$$
X=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}
$$

Taking expecations

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \quad \text { linearity of expecation } \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Pr}\left(Z_{i} \text { is compared to } Z_{j}\right)
\end{aligned}
$$

What is the probability that Z_{i} is compared to Z_{j}

When is Z_{i} compared to Z_{j} ?

- When either Z_{i} or Z_{j} is chosen as a pivot, and the other one is still in the same recursive problem.

What is the probability that Z_{i} is compared to Z_{j}

When is Z_{i} compared to Z_{j} ?

- When either Z_{i} or Z_{j} is chosen as a pivot, and the other one is still in the same recursive problem.
- Equivalently, when either Z_{i} or Z_{j} is the first element from $Z_{i j}$ to be chosen as a pivot.
- What is the probability that Z_{i} or Z_{j} is the first element from $Z_{i j}$ to be chosen as a pivot?

What is the probability that Z_{i} is compared to Z_{j}

When is Z_{i} compared to Z_{j} ?

- When either Z_{i} or Z_{j} is chosen as a pivot, and the other one is still in the same recursive problem.
- Equivalently, when either Z_{i} or Z_{j} is the first element from $Z_{i j}$ to be chosen as a pivot.
- What is the probability that Z_{i} or Z_{j} is the first element from $Z_{i j}$ to be chosen as a pivot?
$-Z_{i j}$ has $j-i+1$ elements.
- pivots are always chosen uniformly at random
$-\operatorname{Pr}\left(Z_{i}\right.$ is compared to $\left.Z_{j}\right)=2 /(j-i+1)$

Finishing analysis

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \quad \text { linearity of expecation } \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Pr}\left(Z_{i} \text { is compared to } Z_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

make the transformation of variables $k=j-1+1$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \\
& \leq 2 \sum_{i=1}^{n} \ln (n-i+1) \\
& \leq 2 \sum_{i=1}^{n} \ln (n) \\
& =O(n \log n)
\end{aligned}
$$

