Recurrences with a big-O in the f(n)

- Recurrences describing running times often have a big-O in the non-recursive term
- Consider T(n) = 2T(n/2) + O(n)
- What does the O(n) mean?

Recurrences with a big-O in the f(n)

- Recurrences describing running times often have a big-O in the non-recursive term
- Consider T(n) = 2T(n/2) + O(n)
- What does the O(n) mean?
- The O(n) is desribing an algorithm e.g. merge, that runs in time kn for some k > 0 that we don't get to pick.

Claim: $T(n) = O(n \lg n)$

Question: What do this big-O mean?

Recurrences with a big-O in the f(n)

- Recurrences describing running times often have a big-O in the non-recursive term
- Consider T(n) = 2T(n/2) + O(n)
- What does the O(n) mean?
- The O(n) is desribing an algorithm e.g. merge, that runs in time kn for some k > 0 that we don't get to pick.

Claim: $T(n) = O(n \lg n)$

Question: What do this big-O mean?

Anwer: $T(n) \leq cn \lg n$ for some c > 0, which we do get to pick

Mechanics of Proof

Claim: The recurrence T(n) = 2T(n/2) + kn has solution $T(n) \le cn \lg n$.

Proof: Use mathematical induction. The base case (implicitly) holds (we didn't even write the base case of the recurrence down).

Inductive step:

$$T(n) = 2T(n/2) + kn$$

$$\leq 2\left(c\frac{n}{2}\lg\left(\frac{n}{2}\right)\right) + kn$$

$$= cn(\lg n - 1) + kn$$

$$= cn\lg n + kn - cn$$

Now we want this last term to be

 $\leq cn \lg n$

, so we need $kn - cn \leq 0$

$$kn - cn \leq 0$$

$$\Leftrightarrow (k - c)n \leq 0$$

$$\Leftrightarrow (k - c) \leq 0$$

$$\Leftrightarrow k \leq c$$

$\mathbf{Is} \ k \leq c$

- Recall that k is given to us (we don't choose it)
- We get to choose c.
- \bullet So if we choose $\ c=k$, then we have satisfied $\ c\leq k$, and the proof is complete.

Proof subtlety

Sometimes we have the correct solution, but the proof by induction doesn't work

- **Consider** T(n) = 4T(n/2) + n
- By the master theorem, the solution is $O(n^2)$

Proof by induction that $T(n) \leq cn^2$ for some c > 0.

$$T(n) = 4T(n/2) + n$$

$$\leq 4\left(c\left(\frac{n}{2}\right)^2\right) + n$$

$$= cn^2 + n$$

Now we want this last term to be

 $\leq cn^2$

, so we need $n \leq 0$

Sometimes we have the correct solution, but the proof by

- Consider T(n) = 4T(n/2) + n
- By the master theorem, the solution is $O(n^2)$

Proof by induction that $T(n) \le cn^2$ for some c > 0.

$$T(n) = 4T(n/2) + n$$

$$\leq 4\left(c\left(\frac{n}{2}\right)^2\right) + n$$

$$= cn^2 + n$$

Now we want this last term to be

 $\leq cn^2$

, so we need $n \leq 0$

UhOh No way is $n \leq 0$. What went wrong?

General Issue with proofs by induction

- Sometimes, you can't prove something by induction because it is too weak. So your inductive hypothesis is not strong enough.
- The fix is to prove something stronger
- We will prove that $T(n) \leq cn^2 dn$ for some positive constants c, d that we get to chose.
- We chose to add the -dn because we noticed that there was an extra n in the previous proof.

The proof

Claim: $T(n) \le cn^2 - dn$ for some positive constants c, d**Proof:**

$$\begin{array}{rcl} T(n) &=& 4T(n/2)+n \\ &\leq& 4\left(c\left(\frac{n}{2}\right)^2 - d\frac{n}{2}\right)+n \\ &=& cn^2 - 2dn +n \\ &=& (cn^2 - dn) + (n - dn) \\ &=& (cn^2 - dn) + (1 - d)n \end{array}$$

Now we want this last term to be

 $\leq cn^2$

, so we need $(1-d)n \leq 0$. Just choose d=2 . We can choose c to be anything, say 1

Conclusion

$$T(n) \le cn^2 - 2n = O(n^2)$$