Recurrences with a big-O in the $f(n)$

- Recurrences describing running times often have a big-O in the nonrecursive term
- Consider $T(n)=2 T(n / 2)+O(n)$
- What does the $O(n)$ mean?

Recurrences with a big-O in the $f(n)$

- Recurrences describing running times often have a big-O in the nonrecursive term
- Consider $T(n)=2 T(n / 2)+O(n)$
- What does the $O(n)$ mean?
- The $O(n)$ is desribing an algoithm e.g. merge, that runs in time $k n$ for some $k>0$ that we don't get to pick.

Claim: $\quad T(n)=O(n \lg n)$

Question: What do this big-O mean?

Recurrences with a big-O in the $f(n)$

- Recurrences describing running times often have a big-O in the nonrecursive term
- Consider $T(n)=2 T(n / 2)+O(n)$
- What does the $O(n)$ mean?
- The $O(n)$ is desribing an algoithm e.g. merge, that runs in time $k n$ for some $k>0$ that we don't get to pick.

Claim: $\quad T(n)=O(n \lg n)$

Question: What do this big-O mean?

Anwer: $\quad T(n) \leq c n \lg n$ for some $c>0$, which we do get to pick

Mechanics of Proof

Claim: The recurrence $T(n)=2 T(n / 2)+k n$ has solution $T(n) \leq c n \lg n$.
Proof: Use mathematical induction. The base case (implicitly) holds (we didn't even write the base case of the recurrence down).

Inductive step:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+k n \\
& \leq 2\left(c \frac{n}{2} \lg \left(\frac{n}{2}\right)\right)+k n \\
& =c n(\lg n-1)+k n \\
& =c n \lg n+k n-c n
\end{aligned}
$$

Now we want this last term to be

$$
\leq c n \lg n
$$

, so we need $k n-c n \leq 0$

$$
\begin{aligned}
k n-c n & \leq 0 \\
\Leftrightarrow(k-c) n & \leq 0 \\
\Leftrightarrow(k-c) & \leq 0 \\
\Leftrightarrow k & \leq c
\end{aligned}
$$

$$
\text { Is } k \leq c
$$

- Recall that k is given to us (we don't choose it)
- We get to choose c.
- So if we choose $c=k$, then we have satisfied $c \leq k$, and the proof is complete.

Proof subtlety

Sometimes we have the correct solution, but the proof by induction doesn't work

- Consider $T(n)=4 T(n / 2)+n$
- By the master theorem, the solution is $O\left(n^{2}\right)$

Proof by induction that $T(n) \leq c n^{2}$ for some $c>0$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4\left(c\left(\frac{n}{2}\right)^{2}\right)+n \\
& =c n^{2}+n
\end{aligned}
$$

Now we want this last term to be

$$
\leq c n^{2}
$$

, so we need $n \leq 0$

Sometimes we have the correct solution, but the proof by

- Consider $T(n)=4 T(n / 2)+n$
- By the master theorem, the solution is $O\left(n^{2}\right)$

Proof by induction that $T(n) \leq c n^{2}$ for some $c>0$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4\left(c\left(\frac{n}{2}\right)^{2}\right)+n \\
& =c n^{2}+n
\end{aligned}
$$

Now we want this last term to be

$$
\leq c n^{2}
$$

, so we need $n \leq 0$
UhOh No way is $n \leq 0$. What went wrong?

General Issue with proofs by induction

- Sometimes, you can't prove something by induction because it is too weak. So your inductive hypothesis is not strong enough.
- The fix is to prove something stronger
- We will prove that $T(n) \leq c n^{2}-d n$ for some positive constants c, d that we get to chose.
- We chose to add the $-d n$ because we noticed that there was an extra n in the previous proof.

The proof

Claim: $\quad T(n) \leq c n^{2}-d n$ for some positive constants c, d
Proof:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4\left(c\left(\frac{n}{2}\right)^{2}-d \frac{n}{2}\right)+n \\
& =c n^{2}-2 d n+n \\
& =\left(c n^{2}-d n\right)+(n-d n) \\
& =\left(c n^{2}-d n\right)+(1-d) n
\end{aligned}
$$

Now we want this last term to be

$$
\leq c n^{2}
$$

, so we need $(1-d) n \leq 0$. Just choose $d=2$. We can choose c to be anything, say 1

Conclusion

$$
T(n) \leq c n^{2}-2 n=O\left(n^{2}\right)
$$

