
Recurrences with a big-O in the f (n)

• Recurrences describing running times often have a big-O in the non-

recursive term

• Consider T (n) = 2T (n/2) +O(n)

• What does the O(n) mean?



Recurrences with a big-O in the f (n)

• Recurrences describing running times often have a big-O in the non-

recursive term

• Consider T (n) = 2T (n/2) +O(n)

• What does the O(n) mean?

• The O(n) is desribing an algoithm e.g. merge, that runs in time kn

for some k > 0 that we don’t get to pick.

Claim: T (n) = O(n lg n)

Question: What do this big-O mean?



Recurrences with a big-O in the f (n)

• Recurrences describing running times often have a big-O in the non-

recursive term

• Consider T (n) = 2T (n/2) +O(n)

• What does the O(n) mean?

• The O(n) is desribing an algoithm e.g. merge, that runs in time kn

for some k > 0 that we don’t get to pick.

Claim: T (n) = O(n lg n)

Question: What do this big-O mean?

Anwer: T (n) ≤ cn lg n for some c > 0 , which we do get to pick



Mechanics of Proof

Claim: The recurrence T (n) = 2T (n/2) + kn has solution T (n) ≤ cn lg n .

Proof: Use mathematical induction. The base case (implicitly) holds (we

didn’t even write the base case of the recurrence down).

Inductive step:

T (n) = 2T (n/2) + kn

≤ 2
(
c
n

2
lg
(n
2

))
+ kn

= cn(lg n− 1) + kn

= cn lg n + kn− cn

Now we want this last term to be

≤ cn lg n

, so we need kn− cn ≤ 0

kn− cn ≤ 0

⇔ (k − c)n ≤ 0

⇔ (k − c) ≤ 0

⇔ k ≤ c



Is k ≤ c

• Recall that k is given to us (we don’t choose it)

• We get to choose c.

• So if we choose c = k , then we have satisfied c ≤ k , and the proof is

complete.



Proof subtlety

Sometimes we have the correct solution, but the proof by induction doesn’t

work

• Consider T (n) = 4T (n/2) + n

• By the master theorem, the solution is O(n2)

Proof by induction that T (n) ≤ cn2 for some c > 0 .

T (n) = 4T (n/2) + n

≤ 4

c
(n
2

)2 + n

= cn2 + n

Now we want this last term to be

≤ cn2

, so we need n ≤ 0



Sometimes we have the correct solution, but the proof by induction doesn’t work

• Consider T (n) = 4T (n/2) + n

• By the master theorem, the solution is O(n2)

Proof by induction that T (n) ≤ cn2 for some c > 0 .

T (n) = 4T (n/2) + n

≤ 4

c
(n
2

)2 + n

= cn2 + n

Now we want this last term to be

≤ cn2

, so we need n ≤ 0

UhOh No way is n ≤ 0 . What went wrong?



General Issue with proofs by induction

• Sometimes, you can’t prove something by induction because it is too

weak. So your inductive hypothesis is not strong enough.

• The fix is to prove something stronger

• We will prove that T (n) ≤ cn2 − dn for some positive constants c, d

that we get to chose.

• We chose to add the −dn because we noticed that there was an extra

n in the previous proof.



The proof

Claim: T (n) ≤ cn2 − dn for some positive constants c, d

Proof:

T (n) = 4T (n/2) + n

≤ 4

c
(n
2

)2
− d

n

2

 + n

= cn2 − 2dn + n

= (cn2 − dn) + (n− dn)

= (cn2 − dn) + (1− d)n

Now we want this last term to be

≤ cn2

, so we need (1− d)n ≤ 0 . Just choose d = 2 . We can choose c to be

anything, say 1

Conclusion

T (n) ≤ cn2 − 2n = O(n2)


