## Randomized Selection

Same start as for deterministic selection
$\operatorname{SElect}(\mathbf{A}, \mathbf{i}, \mathbf{n})$

```
if \((n=1)\)
        then return \(A[1]\)
```

    \(p=\operatorname{MEDiAN}(A)\)
    4
5
$6 L=\{x \in A: x \leq p\}$
$H=\{x \in A: x>p\}$
7 if $i \leq|L|$
8 then $\operatorname{Select}(L, i,|L|)$
$9 \quad$ else $\operatorname{SELECT}(H, i-|L|,|H|)$

Choose pivot $p$ randomly.

## Randomized Selection

Same start as for deterministic selection
$\operatorname{SElect}(\mathbf{A}, \mathbf{i}, \mathbf{n})$

```
if (n=1)
        then return }A[1
```

    \(p=A[\operatorname{RANDOM}(1, n)]\)
    4
5
$6 L=\{x \in A: x \leq p\}$
$H=\{x \in A: x>p\}$

7 if $i \leq|L|$
8 then $\operatorname{Select}(L, i,|L|)$
$9 \quad$ else $\operatorname{SELECT}(H, i-|L|,|H|)$

## Analysis

$T(n)=\sum_{x=1}^{n} \operatorname{Pr}($ partition is $\mathbf{x}$ smallest) $) \cdot($ Running time when partition is $\mathbf{x}$ smallest).
Using $x$ and $n-x$ as an upper bound of the sizes of the two sides:

$$
\begin{aligned}
T(n) & \leq \sum_{x=1}^{n} \frac{1}{n}((T(x) \text { or } T(n-x))+O(n)) \\
& \leq \sum_{x=1}^{n} \frac{1}{n}(T(\max \{x, n-x\})+O(n)) \\
& \leq\left(\frac{1}{n}\right) \sum_{x=1}^{n}(T(\max \{x, n-x\}))+O(n)
\end{aligned}
$$

We now rewrite the max term. Notice that as $x$ goes from 1 to $n$, the term $\max \{x, n-x\}$ takes on the values $n-1, n-2, n-3, \ldots, n / 2, n / 2, n / 2+$ $1, n / 2+2, \ldots, n-1, n$. As an overestimate, we say that it takes all the values between $n / 2$ and $n$ twice. Thus we substitute and obtain

$$
\begin{aligned}
T(n) & \leq\left(\frac{2}{n} \sum_{x=0}^{n / 2} T(n / 2+x)\right)+O(n) \\
& =\frac{2}{n} T(n)+\left(\frac{2}{n} \sum_{x=0}^{n / 2-1} T(n / 2+x)\right)+O(n)
\end{aligned}
$$

## Analysis

$$
\begin{aligned}
T(n) & \leq\left(\frac{2}{n} \sum_{x=0}^{n / 2} T(n / 2+x)\right)+O(n) \\
& =\frac{2}{n} T(n)+\left(\frac{2}{n} \sum_{x=0}^{n / 2-1} T(n / 2+x)\right)+O(n)
\end{aligned}
$$

We pulled out the $T(n)$ terms to emphasize them. We might be worried about having $T(n)$ on the right side of the equation, so we will bring it over the left-hand side and obtain

$$
\left(1-\frac{2}{n}\right) T(n) \leq\left(\frac{2}{n} \sum_{x=0}^{n / 2-1} T(n / 2+x)\right)+O(n) .
$$

We now multiply both sides of the inequality by $n /(n-2)$ to obtain:

$$
T(n) \leq\left(\frac{2}{n-2} \sum_{x=0}^{n / 2-1} T(n / 2+x)\right)+k n^{2} /(n-2) .
$$

We have replaced the $O(n)$ by $k n$ for some constant $k$ before multiplying by $n /(n-2)$. We do this because we will need to for the proof by induction below.
We now have a recurrence in a nice form. $T(n)$ is on the left, and the right has terms of the form $T(x)$ for $x<n$. We can therefore "guess" that $T(n)=O(n)$ and try to prove it. More precisely, we will prove by induction that $T(n) \leq c n$ for some $c$. Since the recurrence is in the stated form, we can substitute in on the right hand side and obtain

## Analysis

$$
\begin{aligned}
T(n) & \leq\left(\frac{2}{n-2} \sum_{x=0}^{n / 2-1} T(n / 2+x)\right)+k n^{2} /(n-2) \\
& \leq\left(\frac{2}{n-2} \sum_{x=0}^{n / 2-1} c(n / 2+x)\right)+k n^{2} /(n-2) \\
& =\left(\frac{2 c}{n-2}\right)((n / 2)(n / 2)+(n / 2-1)(n / 2) / 2)+k n^{2} /(n-2) \\
& =\left(\frac{2 c}{n-2}\right)\left(3 n^{2} / 8-n / 4\right)+k n^{2} /(n-2) \\
& =\left(\frac{c}{n-2}\right)\left(3 n^{2} / 4-n / 8\right)+k n^{2} /(n-2) \\
& =\frac{1}{n-2}\left((3 c / 4+k) n^{2}-(c / 8) n\right) \\
& =\frac{n}{n-2}((3 c / 4+k) n-(c / 8))
\end{aligned}
$$

Looking at this last term, we see that the leading $n /(n-2)$ is slightly larger than 1 , so we can upper bound it by, say $7 / 6$ for $n \geq 14$ (there are many possible choices of upper bounds.) Our goal, remember, is to show that the term multiplying the $n$ is at most $c$, and as we will see, this suffices.
So we get

$$
T(n) \leq(7 / 6)((3 c / 4+k) n-(c / 8)) .
$$

## Analysis

$$
T(n) \leq(7 / 6)((3 c / 4+k) n-(c / 8))
$$

If the right hand side is at most $c n$ we are done. Whether it is will depend on the relative values of $c$ and $k$. Let's write the constraint we want

$$
(7 / 6)((3 c / 4+k) n-(c / 8)) \leq c n
$$

and solve for $c$ in terms of $k$. We get

$$
(7 c / 8+7 k / 6-c) n \leq 7 c / 48
$$

or
$(7 k / 6-c / 8) n \leq 7 c / 48$.
Clearly, if $7 k / 6-c / 8<0$ this will hold. So we just choose $c$ sufficiently larger than $k$, e.g. $c=28 k / 3$ and we are done.

